A pinboard by
Seyedbehzad Naderi

Seyed Behzad Naderi (S'10) received the B.S. and M.Sc. degrees in power engineering from the University of Tabriz, Tabriz, Iran, in 2008 and 2011, respectively. He is currently PhD Fellow at the School of Engineering and ICT, University of Tasmania, Australia and working with Prof Michael Negnevitsky. Meanwhile, he was also with Department of Energy Technology as a guest visiting PhD student at Aalborg University, Denmark and cooperating with Prof Frede Blaabjerg. He is the author and coauthor of more than 20 journal and conference papers. His current research interests include fault current limiters, power system transient stability, power quality, flexible ac transmission systems, and renewable energy.

Renewable Energy, Wind Turbine, Power Electronics, Power System Analysis, Transient Stability, Fault Current Limiters, Power Quality


Voltage Sag Compensation of Point of Common Coupling (PCC) Using Fault Current Limiter

In this work, voltage sag compensation of point of common coupling (PCC) using a new structure of fault current limiter (FCL) is proposed. The proposed structure prevents voltage sag and phase-angle jump of the substation PCC after fault occurrence. This structure has a simple control method. Using the semiconductor switch (insulated-gate bipolar transistor or gate turnoff thyristor at dc current rout leads to fast operation of the proposed FCL and, consequently, dc reactor value is reduced. On the other hand, the proposed structure reduces the total harmonic distortion on load voltage and it has low ac losses in normal operation. As a result, other feeders, which are connected to the substation PCC, will have good power quality. Analytical analysis and simulation results using PSCAD/EMTDC software and experimental results are presented to validate the effectiveness of this structure.