Quantcast


CURATOR
A pinboard by
Sharlene Flesher
PINBOARD SUMMARY

Exploring how the sense of touch influences behavior, and what happens when it's gone

The field of brain computer interfaces (BCI) has been making rapid advances in decoding brain activity into control signals capable of operating neural prosthetic devices, such as dexterous robotic arms and computer cursors. Recent work has demonstrated simultaneous control over up to 10 degrees-of-freedom, but the current paradigms lack a component crucial to normal motor control: somatosensory feedback. Currently, BCIs are controlled using visual feedback alone, which is important for many reaching movement and identifying target locations.

The objective of this work is to provide real-time, cutaneous, somatosensory feedback to users of dexterous prosthetic limbs under BCI control by applying intracortical microstimulation (ICMS) to primary somatosensory cortex. To this end, two microelectrode arrays were placed in human somatosensory cortex of a human participant. I first characterized qualities of sensations evoked via ICMS, such as percept location, modality, intensity and size, over a two-year study period. The sensations were found to be focal to a single digit, and increased in intensity linearly with pulse train amplitude. Additionally, I found these qualities to be stable over a two-year period, suggesting that delivering ICMS was not damaging the electrode-tissue interface. ICMS was then used as a real-time feedback source during BCI control of a robotic limb during tasks ranging from simple force-matching tasks to functional reach, grasp and carry tasks. Finally, we examined the relationship between pulse train parameters and conscious perception of sensations, an endeavor that until now could not have been undertaken.

These results demonstrate that ICMS is a suitable means of relaying somatosensory feedback to BCI users. Adding somatosensory feedback to BCI users has the potential to improve embodiment and control of the devices, bringing this technology closer to restoring upper limb function.

6 ITEMS PINNED

Congruency of body-related information induces somatosensory reorganization.

Abstract: Chronic pain and impaired tactile sensitivity are frequently associated with "blurred" representations in the somatosensory cortex. The factors that produce such somatosensory blurring, however, remain poorly understood. We manipulated visuo-tactile congruence to investigate its role in promoting somatosensory reorganization. To this aim we used the mirror box illusion that produced in participants the subjective feeling of looking directly at their left hand, though they were seeing the reflection of their right hand. Simultaneous touches were applied to the middle or ring finger of each hand. In one session, the same fingers were touched (for example both middle fingers), producing a congruent percept; in the other session different fingers were touched, producing an incongruent percept. In the somatosensory system, suppressive interactions between adjacent stimuli are an index of intracortical inhibitory function. After each congruent and incongruent session, we recorded somatosensory evoked potential (SEPs) elicited by electrocutaneous stimulation of the left ring and middle fingers, either individually or simultaneously. A somatosensory suppression index (SSI) was calculated as the difference in amplitude between the sum of potentials evoked by the two individually stimulated fingers and the potentials evoked by simultaneous stimulation of both fingers. This SSI can be taken as an index of the strength of inhibitory interactions and consequently can provide a measure of how distinct the representations of the two fingers are. Results showed stronger SSI in the P100 component after congruent than incongruent stimulation, suggesting the key role of congruent sensory information about the body in inducing somatosensory reorganization.

Pub.: 24 Feb '16, Pinned: 28 Jun '17