PhD student, The University of Sheffield


Mechanisms of basal ganglia neurotransmitters in action sequences

Almost all behaviours in humans and animals are built of sequences of actions performed in a fluent and seemingly effortless way. From making a cup of tea to playing elaborate piano pieces, performing complex behavioural patterns requires executing sequences of movements in a specific order. How the brain integrates individual actions into coherent and organised behavioural units is an important topic of discussion in neuroscience, and the topic of my PhD.

There are many ways to study action sequences. A simple, but elegant way to do it, is by looking at innate behaviours that already display strong sequential organization. An example of these behaviours is the grooming chain performed by rodents, which consists of a sequence of four behaviours that always occur in the same order.

Many brain areas are involved in action sequences. However, the basal ganglia, a complex network in the brain, has been found to regulate action selection. Its biggest component, the striatum, has been suggested to play a crucial role in the organization of action sequences.

Within the striatum, there is a complex microcircuit where neurons communicate with each other through neurotransmitters. My research focuses on two of them: substance P and enkephalin. To investigate their role in action sequences, I am blocking their effects in the brain and observing what happens to the grooming chain of rats.

Studying how simple sequences of action such as the grooming chain, are organised in the striatum, could shed light on some of the diseases in which normal behavioural patterns are disrupted, such as Attention Deficit and Hyperactivity Disorder and Huntington's Disease.


NK1 (TACR1) receptor gene 'knockout' mouse phenotype predicts genetic association with ADHD.

Abstract: Mice with functional genetic ablation of the Tacr1 (substance P-preferring receptor) gene (NK1R-/-) are hyperactive. Here, we investigated whether this is mimicked by NK1R antagonism and whether dopaminergic transmission is disrupted in brain regions that govern motor performance. The locomotor activity of NK1R-/- and wild-type mice was compared after treatment with an NK1R antagonist and/or psychostimulant (d-amphetamine or methylphenidate). The inactivation of NK1R (by gene mutation or receptor antagonism) induced hyperactivity in mice, which was prevented by both psychostimulants. Using in vivo microdialysis, we then compared the regulation of extracellular dopamine in the prefrontal cortex (PFC) and striatum in the two genotypes. A lack of functional NK1R reduced (>50%) spontaneous dopamine efflux in the prefrontal cortex and abolished the striatal dopamine response to d-amphetamine. These behavioural and neurochemical abnormalities in NK1R-/- mice, together with their atypical response to psychostimulants, echo attention deficit hyperactivity disorder (ADHD) in humans. These findings prompted genetic studies on the TACR1 gene (the human equivalent of NK1R) in ADHD patients in a case-control study of 450 ADHD patients and 600 screened supernormal controls. Four single-nucleotide polymorphisms (rs3771829, rs3771833, rs3771856, and rs1701137) at the TACR1 gene, previously known to be associated with bipolar disorder or alcoholism, were strongly associated with ADHD. In conclusion, our proposal that NK1R-/- mice offer a mouse model of ADHD was borne out by our human studies, which suggest that DNA sequence changes in and around the TACR1 gene increase susceptibility to this disorder.

Pub.: 11 Feb '09, Pinned: 19 Sep '17

Basal ganglia neural mechanisms of natural movement sequences.

Abstract: Natural rodent grooming and other instinctive behavior serves as a natural model of complex movement sequences. Rodent grooming has syntactic (rule-driven) sequences and more random movement patterns. Both incorporate the same movements--only the serial structure differs. Recordings of neural activity in the dorsolateral striatum and the substantia nigra pars reticulata indicate preferential activation during syntactic sequences over more random sequences. Neurons that are responsive during syntactic grooming sequences are often unresponsive or have reverse activation profiles during kinematically similar movements that occur in flexible or random grooming sequences. Few neurons could be categorized as strictly movement related--instead they were activated only in the context of particular sequential patterns of movements. Particular sequential patterns included "syntactic chain" grooming sequences of paw, head, and body movements and also "warm-up" sequences, which consist of head and body/limb movements that precede locomotion after a period of quiet resting (Golani 1992). Activation during warm-up was less intense and less frequent than during grooming sequences, but both sequences activated neurons above baseline levels, and the same neurons sometimes responded to both sequences. The fact that striatal neurons code 2 natural sequences which are made up of different constituent movements suggests that the basal ganglia may have a generalized role in sequence control. The basal ganglia are modulated by the context of the sequence and may play an executive function in the complex natural patterns of sequenced behaviour.

Pub.: 04 Nov '04, Pinned: 19 Sep '17

Sequential super-stereotypy of an instinctive fixed action pattern in hyper-dopaminergic mutant mice: a model of obsessive compulsive disorder and Tourette's.

Abstract: Excessive sequential stereotypy of behavioral patterns (sequential super-stereotypy) in Tourette's syndrome and obsessive compulsive disorder (OCD) is thought to involve dysfunction in nigrostriatal dopamine systems. In sequential super-stereotypy, patients become trapped in overly rigid sequential patterns of action, language, or thought. Some instinctive behavioral patterns of animals, such as the syntactic grooming chain pattern of rodents, have sufficiently complex and stereotyped serial structure to detect potential production of overly-rigid sequential patterns. A syntactic grooming chain is a fixed action pattern that serially links up to 25 grooming movements into 4 predictable phases that follow 1 syntactic rule. New mutant mouse models allow gene-based manipulation of brain function relevant to sequential patterns, but no current animal model of spontaneous OCD-like behaviors has so far been reported to exhibit sequential super-stereotypy in the sense of a whole complex serial pattern that becomes stronger and excessively rigid. Here we used a hyper-dopaminergic mutant mouse to examine whether an OCD-like behavioral sequence in animals shows sequential super-stereotypy. Knockdown mutation of the dopamine transporter gene (DAT) causes extracellular dopamine levels in the neostriatum of these adult mutant mice to rise to 170% of wild-type control levels.We found that the serial pattern of this instinctive behavioral sequence becomes strengthened as an entire entity in hyper-dopaminergic mutants, and more resistant to interruption. Hyper-dopaminergic mutant mice have stronger and more rigid syntactic grooming chain patterns than wild-type control mice. Mutants showed sequential super-stereotypy in the sense of having more stereotyped and predictable syntactic grooming sequences, and were also more likely to resist disruption of the pattern en route, by returning after a disruption to complete the pattern from the appropriate point in the sequence. By contrast, wild-type mice exhibited weaker forms of the fixed action pattern, and often failed to complete the full sequence.Sequential super-stereotypy occurs in the complex fixed action patterns of hyper-dopaminergic mutant mice. Elucidation of the basis for sequential super-stereotypy of instinctive behavior in DAT knockdown mutant mice may offer insights into neural mechanisms of overly-rigid sequences of action or thought in human patients with disorders such as Tourette's or OCD.

Pub.: 16 Feb '05, Pinned: 19 Sep '17