Quantcast


CURATOR
A pinboard by
Sybil Wong, PhD

I work with PhDs around the world to accelerate the dissemination of accessible scientific content.

PINBOARD SUMMARY

The microbiome has garnered intense research interest, but are we any closer to therapies?

The definition of a healthy human microbiome is still under debate by researchers around the world, but it is clear from studies in recent years that a plethora of associations can be made between the microbiome and chronic human disease.

In this pinboard, I'm specifically curating papers that refer to clinical studies, in an attempt to piece together direct cause-and-effect between the microbiome and the respective disease.

Therapeutic areas I've covered so far:


There's still a long way ahead for those developing microbiome-based therapies, but there has been some promising progress in attempts to prevent microbiota from triggering undesirable immune responses in multiple sclerosis.

March 02, 2018: Click here to read more about multiple sclerosis and the microbiome in Dr. Linda Zhang's summary

12 ITEMS PINNED

The healthy human microbiome.

Abstract: Humans are virtually identical in their genetic makeup, yet the small differences in our DNA give rise to tremendous phenotypic diversity across the human population. By contrast, the metagenome of the human microbiome-the total DNA content of microbes inhabiting our bodies-is quite a bit more variable, with only a third of its constituent genes found in a majority of healthy individuals. Understanding this variability in the "healthy microbiome" has thus been a major challenge in microbiome research, dating back at least to the 1960s, continuing through the Human Microbiome Project and beyond. Cataloguing the necessary and sufficient sets of microbiome features that support health, and the normal ranges of these features in healthy populations, is an essential first step to identifying and correcting microbial configurations that are implicated in disease. Toward this goal, several population-scale studies have documented the ranges and diversity of both taxonomic compositions and functional potentials normally observed in the microbiomes of healthy populations, along with possible driving factors such as geography, diet, and lifestyle. Here, we review several definitions of a 'healthy microbiome' that have emerged, the current understanding of the ranges of healthy microbial diversity, and gaps such as the characterization of molecular function and the development of ecological therapies to be addressed in the future.

Pub.: 29 Apr '16, Pinned: 19 Mar '18

Sputum microbiome temporal variability and dysbiosis in chronic obstructive pulmonary disease exacerbations: an analysis of the COPDMAP study.

Abstract: Recent studies suggest that lung microbiome dysbiosis, the disease associated disruption of the lung microbial community, might play a key role in chronic obstructive pulmonary disease (COPD) exacerbations. However, characterising temporal variability of the microbiome from large longitudinal COPD cohorts is needed to better understand this phenomenon.We performed a 16S ribosomal RNA survey of microbiome on 716 sputum samples collected longitudinally at baseline and exacerbations from 281 subjects with COPD at three UK clinical centres as part of the COPDMAP consortium.The microbiome composition was similar among centres and between stable and exacerbations except for a small significant decrease of Veillonella at exacerbations. The abundance of Moraxella was negatively associated with bacterial alpha diversity. Microbiomes were distinct between exacerbations associated with bacteria versus eosinophilic airway inflammation. Dysbiosis at exacerbations, measured as significant within subject deviation of microbial composition relative to baseline, was present in 41% of exacerbations. Dysbiosis was associated with increased exacerbation severity indicated by a greater fall in forced expiratory volume in one second, forced vital capacity and a greater increase in CAT score, particularly in exacerbations with concurrent eosinophilic inflammation. There was a significant difference of temporal variability of microbial alpha and beta diversity among centres. The variation of beta diversity significantly decreased in those subjects with frequent historical exacerbations.Microbial dysbiosis is a feature of some exacerbations and its presence, especially in concert with eosinophilic inflammation, is associated with more severe exacerbations indicated by a greater fall in lung function.Results, NCT01620645.

Pub.: 23 Dec '17, Pinned: 19 Mar '18

Asthma and the microbiome: defining the critical window in early life.

Abstract: Asthma is a chronic inflammatory immune disorder of the airways affecting one in ten children in westernized countries. The geographical disparity combined with a generational rise in prevalence, emphasizes that changing environmental exposures play a significant role in the etiology of this disease. The microflora hypothesis suggests that early life exposures are disrupting the composition of the microbiota and consequently, promoting immune dysregulation in the form of hypersensitivity disorders. Animal model research supports a role of the microbiota in asthma and atopic disease development. Further, these model systems have identified an early life critical window, during which gut microbial dysbiosis is most influential in promoting hypersensitivity disorders. Until recently this critical window had not been characterized in humans, but now studies suggest that the ideal time to use microbes as preventative treatments or diagnostics for asthma in humans is within the first 100 days of life. This review outlines the major mouse-model and human studies leading to characterization of the early life critical window, emphasizing studies analyzing the intestinal and airway microbiotas in asthma and atopic disease. This research has promising future implications regarding childhood immune health, as ultimately it may be possible to therapeutically administer specific microbes in early life to prevent the development of asthma in children.

Pub.: 13 Jan '17, Pinned: 19 Mar '18

Combined therapies to treat complex diseases: The role of the gut microbiota in multiple sclerosis.

Abstract: The commensal microbiota has emerged as an environmental risk factor for multiple sclerosis (MS). Studies in experimental autoimmune encephalomyelitis (EAE) models have shown that the commensal microbiota is an essential player in triggering autoimmune demyelination. Likewise, the commensal microbiota modulates the host immune system, alters the integrity and function of biological barriers and has a direct effect on several types of central nervous system (CNS)-resident cells. Moreover, a characteristic gut dysbiosis has been recognized as a consistent feature during the clinical course of MS, and the MS-related microbiota is gradually being elucidated. This review highlights animal studies in which commensal microbiota modulation was tested in EAE, as well as the mechanisms of action and influence of the commensal microbiota not only in the local milieu but also in the innate and adaptive immune system and the CNS. Regarding human research, this review focuses on studies that show how the commensal microbiota might act as a pathogenic environmental risk factor by directing immune responses towards characteristic pathogenic profiles of MS. We speculate how specific microbiome signatures could be obtained and used as potential pathogenic events and biomarkers for the clinical course of MS. Finally, we review recently published and ongoing clinical trials in MS patients regarding the immunomodulatory properties exerted by some microorganisms. Because MS is a complex disease with a large variety of associated environmental risk factors, we suggest that current treatments combined with strategies that modulate the commensal microbiota would constitute a broader immunotherapeutic approach and improve the clinical outcome for MS patients.

Pub.: 02 Dec '17, Pinned: 19 Mar '18