Quantcast


Curator

Space may be the final frontier but Mars is second, after the moon obviously.

Pinboard Summary

Fancy moving to Mars? Some things to consider before you book your flight...

I've really enjoyed curating this collection of content related to Mars, and will continue to do so as long there's relevant research being published or I can add other content that adds value. The content is structured in such a way as to tell a story, as I believe that's the most logical way of ordering the various subject areas.

We start with getting to Mars as the journey is perhaps the most hazardous phase. That is until the landing which obviously is pretty scary given so many missions fail to make it down in one piece. Once you're down it's real plain sailing in comparison, just the food, water, air thing to worry about. Then there's politics and what to do with all the spare time, oh... and kids?

There are many challenges along the way, and whilst most science research related to the technology is commercially sensitive and therefore not in the public domain, there is lots of real science to get excited about.

Hopefully you find it interesting.

33 items pinned

Learning to live on a Mars day: fatigue countermeasures during the Phoenix Mars Lander mission.

Abstract: To interact with the robotic Phoenix Mars Lander (PML) spacecraft, mission personnel were required to work on a Mars day (24.65 h) for 78 days. This alien schedule presents a challenge to Earth-bound circadian physiology and a potential risk to workplace performance and safety. We evaluated the acceptability, feasibility, and effectiveness of a fatigue management program to facilitate synchronization with the Mars day and alleviate circadian misalignment, sleep loss, and fatigue.Operational field study.PML Science Operations Center.Scientific and technical personnel supporting PML mission.Sleep and fatigue education was offered to all support personnel. A subset (n = 19) were offered a short-wavelength (blue) light panel to aid alertness and mitigate/reduce circadian desynchrony. They were assessed using a daily sleep/work diary, continuous wrist actigraphy, and regular performance tests. Subjects also completed 48-h urine collections biweekly for assessment of the circadian 6-sulphatoxymelatonin rhythm.Most participants (87%) exhibited a circadian period consistent with adaptation to a Mars day. When synchronized, main sleep duration was 5.98 ± 0.94 h, but fell to 4.91 ± 1.22 h when misaligned (P < 0.001). Self-reported levels of fatigue and sleepiness also significantly increased when work was scheduled at an inappropriate circadian phase (P < 0.001). Prolonged wakefulness (≥ 21 h) was associated with a decline in performance and alertness (P < 0.03 and P < 0.0001, respectively).The ability of the participants to adapt successfully to the Mars day suggests that future missions should utilize a similar circadian rhythm and fatigue management program to reduce the risk of sleepiness-related errors that jeopardize personnel safety and health during critical missions.

Pub.: 02 Oct '12, Pinned: 09 Sep '16

A pragmatic approach to sovereignty on Mars

Abstract: Rising interest in Mars colonization from both private and public sectors necessitates a renewed discussion about sovereignty in space. The non-appropriation principle of the Outer Space Treaty currently prohibits any sovereign claims to celestial bodies, but it remains unclear how this principle should be applied to the peaceful colonization of Mars. Here we develop a pragmatic approach to guide the settlement of Mars, which is based upon a “bounded first possession” model with mandatory planetary parks. Scientists, experts, and leaders will establish planetary park locations and regulations through worldwide community solicitation in order to protect sites of scientific, aesthetic, historical, cultural, environmental, spiritual value. Colonization parties may occupy limited plots of martian land and may claim exclusive economic rights within this zone, while still refraining from any claims to sovereignty. All colonists remain under the legal jurisdiction of their host nation, with conflicts to be resolved diplomatically or through a temporary tribunal system composed of representatives from other Mars colonies. We also propose the formation of a Mars Secretariat as an administrative body with limited power to facilitate communication among parties. Our model for Mars colonization remains consistent with the Outer Space Treaty, but we also recommend revisiting or amending the non-appropriation and province of mankind principles to resolve the ambiguity of how nations, corporations, and individuals may utilize the resources of space.

Pub.: 30 May '16, Pinned: 09 Sep '16

Mars and Venus: Different destinies of terrestrial planets

Abstract: Being insignificantly different in distance from the Sun, the main terrestrial planets—Venus, the Earth, and Mars—fall, with due account for inaccuracies, within the so-called habitable zone, i.e., the range of distances from a parent star within which water on the planets can exist in the liquid state. Most likely, in the process of their formation, the three planets received approximately the same share of water. However, only the Earth’s climate is suitable for the development of life. How did it happen that Mars became cold and water on it froze, while the absolutely dry surface of Venus is red hot, exceeding 460°C' Was this always the situation' Climate changes on Mars and Venus from the beginning of the planets' independent existence to the present day are considered, and parallels are drawn with the changing climate of the Earth. The article also discusses how the particularities of the early climate of Mars are related to its inhabitation, as well as the likelihood of discovering biological activity on that planet. Some of the results presented in this article were obtained using Russian instruments installed on the artificial satellites Mars Express and Venus Express. Being insignificantly different in distance from the Sun, the main terrestrial planets—Venus, the Earth, and Mars—fall, with due account for inaccuracies, within the so-called habitable zone, i.e., the range of distances from a parent star within which water on the planets can exist in the liquid state. Most likely, in the process of their formation, the three planets received approximately the same share of water. However, only the Earth’s climate is suitable for the development of life. How did it happen that Mars became cold and water on it froze, while the absolutely dry surface of Venus is red hot, exceeding 460°C' Was this always the situation' Climate changes on Mars and Venus from the beginning of the planets' independent existence to the present day are considered, and parallels are drawn with the changing climate of the Earth. The article also discusses how the particularities of the early climate of Mars are related to its inhabitation, as well as the likelihood of discovering biological activity on that planet. Some of the results presented in this article were obtained using Russian instruments installed on the artificial satellites Mars Express and Venus Express.Mars ExpressVenus Express

Pub.: 01 Jul '16, Pinned: 09 Sep '16