Quantcast


CURATOR
A pinboard by
Seline Omondi

MSc Student, University of Nairobi

PINBOARD SUMMARY

Intensity assays are a new tool that can determine the level of resistance to insectides in vectors

The development and spread of resistance among local vectors to the major classes of insecticides used in Long Lasting Insecticidal Nets (LLINs) and Indoor Residual Spraying (IRS) poses a major challenge to malaria vectors control programs worldwide. The main methods of evaluating insecticide resistance in malaria vector are the WHO tube bioassay and CDC bottle assays their weakness being determination of resistance at a fixed dose for variable populations. The CDC bottle assay using different insecticide dosages has proved applicable in ascertaining the intensity of resistance. We determined the status and intensity of permethrin resistance and investigated the efficacy of commonly used LLINs (PermaNet® 2.0, PermaNet® 3.0 and Olyset®) against 3-5 day old adult female Anopheles mosquitoes from four sub counties in western Kenya. Knockdown was assessed to 4 doses of permethrin using CDC bottle assays,

6 ITEMS PINNED

The efficacy of long-lasting nets with declining physical integrity may be compromised in areas with high levels of pyrethroid resistance.

Abstract: Long-lasting insecticide-treated mosquito nets (LLINs) are a primary malaria prevention strategy in sub-Saharan Africa. However, emergence of insecticide resistance threatens the effectiveness of LLINs.Cross-sectional surveys of LLINs were conducted in houses of seven and four villages in Gem and Bungoma Districts in western Kenya, respectively. Condition (number and area of holes in the nets), number and species of mosquitoes resting inside them, and insecticidal activity of nets were quantified. Mosquitoes collected inside nets were allowed to lay eggs and progeny tested for susceptibility to deltamethrin and permethrin, pyrethoids commonly deployed in LLINs in western Kenya.In Gem, 83.3% of nets were less than three years old and 32.4% had at least one hole of any size; while in Bungoma, 92% were less than three years old and 48% had at least one hole. No anopheline and five Culex spp. mosquitoes were found resting inside nets in Gem regardless of the number and size of holes, while 552 Anopheles gambiae s.l., five Anopheles funestus s.l. and 137 Culex spp. were in nets in Bungoma. The number of mosquitoes resting inside nets increased with hole areas >50 cm in Bungoma. In WHO resistance assays, f1 offspring of samples collected in nets in Bungoma were 94 and 65% resistant to deltamethrin and permethrin, respectively. Nets from Bungoma retained strong activity against a susceptible laboratory strain, but not against f1 offspring of field-collected An. gambiae s.s. All An. gambiae s.s. samples collected in nets were homozygous for the kdr genotype L1014S.In areas with pyrethroid resistant vectors, LLINs with modest hole areas permit mosquito entry and feeding, providing little protection against the vectors. LLIN formulations develop large holes within three years of use, diminishing their presupposed lifetime effectiveness.

Pub.: 26 Oct '13, Pinned: 07 Sep '17

Insecticide resistance in Anopheles arabiensis in Sudan: temporal trends and underlying mechanisms.

Abstract: Malaria vector control in Sudan relies mainly on indoor residual spraying (IRS) and the use of long lasting insecticide treated bed nets (LLINs). Monitoring insecticide resistance in the main Sudanese malaria vector, Anopheles arabiensis, is essential for planning and implementing an effective vector control program in this country.WHO susceptibility tests were used to monitor resistance to insecticides from all four WHO-approved classes of insecticide at four sentinel sites in Gezira state over a three year period. Insecticide resistance mechanisms were studied using PCR and microarray analyses.WHO susceptibility tests showed that Anopheles arabiensis from all sites were fully susceptible to bendiocarb and fenitrothion for the duration of the study (2008-2011). However, resistance to DDT and pyrethroids was detected at three sites, with strong seasonal variations evident at all sites. The 1014 F kdr allele was significantly associated with resistance to pyrethroids and DDT (P < 0.001) with extremely high effects sizes (OR > 7 in allelic tests). The 1014S allele was not detected in any of the populations tested. Microarray analysis of the permethrin-resistant population of An. arabiensis from Wad Medani identified a number of metabolic genes that were significantly over-transcribed in the field-collected resistant samples when compared to the susceptible Sudanese An. arabiensis Dongola strain. These included CYP6M2 and CYP6P3, two genes previously implicated in pyrethroid resistance in Anopheles gambiae s.s, and the epsilon-class glutathione-S-transferase, GSTe4.These data suggest that both target-site mechanisms and metabolic mechanisms play an important role in conferring pyrethroid resistance in An. arabiensis from Sudan. Identification in An. arabiensis of candidate loci that have been implicated in the resistance phenotype in An. gambiae requires further investigation to confirm the role of these genes.

Pub.: 03 Jun '14, Pinned: 07 Sep '17

When a discriminating dose assay is not enough: measuring the intensity of insecticide resistance in malaria vectors.

Abstract: Guidelines from the World Health Organization for monitoring insecticide resistance in disease vectors recommend exposing insects to a predetermined discriminating dose of insecticide and recording the percentage mortality in the population. This standardized methodology has been widely adopted for malaria vectors and has provided valuable data on the spread and prevalence of resistance. However, understanding the potential impact of this resistance on malaria control requires a more quantitative measure of the strength or intensity of this resistance.Bioassays were adapted to quantify the level of resistance to permethrin in laboratory colonies and field populations of Anopheles gambiae sensu lato. WHO susceptibility tube assays were used to produce data on mortality versus exposure time and CDC bottle bioassays were used to generate dose response data sets. A modified version of the CDC bottle bioassay, known as the Resistance Intensity Rapid Diagnostic Test (I-RDT), was also used to measure the knockdown and mortality after exposure to different multipliers of the diagnostic dose. Finally cone bioassays were used to assess mortality after exposure to insecticide treated nets.The time response assays were simple to perform but not suitable for highly resistant populations. After initial problems with stability of insecticide and bottle washing were resolved, the CDC bottle bioassay provided a reproducible, quantitative measure of resistance but there were challenges performing this under field conditions. The I-RDT was simple to perform and interpret although the end point selected (immediate knockdown versus 24 h mortality) could dramatically affect the interpretation of the data. The utility of the cone bioassays was dependent on net type and thus appropriate controls are needed to interpret the operational significance of these data sets.Incorporating quantitative measures of resistance strength, and utilizing bioassays with field doses of insecticides, will help interpret the possible impact of resistance on vector control activities. Each method tested had different benefits and challenges and agreement on a common methodology would be beneficial so that data are generated in a standardized format. This type of quantitative data are an important prerequisite to linking resistance strength to epidemiological outcomes.

Pub.: 20 May '15, Pinned: 07 Sep '17

Insecticidal decay effects of long-lasting insecticide nets and indoor residual spraying on Anopheles gambiae and Anopheles arabiensis in Western Kenya.

Abstract: Indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) are the first-line tools for malaria prevention and control in Africa. Vector resistance to insecticides has been extensively studied, however the insecticidal effects of the nets and sprayed walls on pyrethroid resistant mosquitoes has not been studied thoroughly. We evaluated the bioefficacy of LLINs of different ages and lambda-cyhalothrin (ICON 10cs) on the sprayed mud walls for a period of time on malaria vector survivorship.WHO tube bioassay was performed using diagnostic doses of lambda-cyhalothrin (0.05%), permethrin (0.75%) and deltamethrin (0.05%). Cone bioassays were conducted on netting materials from 0 to 3 years old long-lasting insecticide-impregnated nets. Wall bioassays were performed monthly on mud slabs sprayed with lambdacyhalothrin over a period of seven months. All bioassays used An. gambiae mosquitoes collected from the field and the laboratory susceptible reference Kisumu strain. Concentration of the insecticides on the netting materials was examined using the gas chromatography method. Mosquitoes were identified to species level using PCR and genotyped for the kdr gene mutation frequencies.WHO bioassays results showed that populations from five sites were highly resistant to the pyrethroids (mortalities ranged from 52.5 to 75.3%), and two sites were moderately resistant to these insecticides (80.4 - 87.2%). Homozygote kdr mutations of L1014S ranged from 73 to 88% in An. gambiae s.s. dominant populations whereas L1014S mutation frequencies were relatively low (7-31%) in An. arabiensis dominant populations. There was a significant decrease (P < 0.05) in mosquito mortality with time after the spray with both lambda-cyhalothrin (75% mortality after six months) and with the age of LLINs (60% mortality after 24 month). Field collected mosquitoes were able to survive exposure to both IRS and LLINs even with newly sprayed walls (86.6-93.5% mortality) and new LLINs (77.5-85.0% mortality), Wild mosquitoes collected from the field had significantly lower mortality rates to LLINs (59.6-85.0%) than laboratory reared susceptible strain (100%). Insecticide concentration decreased significantly from 0.14 μg/ml in the new nets to 0.077 μg/ml in nets older than 18 months (P < 0.05).This study confirms that insecticide decay and developing levels of resistance have a negative contribution to reduced efficacy of ITN and IRS in western Kenya. These factors contribute to decreased efficacy of pyrethroid insectides in ongoing malaria control programs. In order to mitigate against the impact of insecticide resistance and decay it is important to follow the WHO policy to provide the residents with new LLINs every three years of use while maintaining a high level of LLINs coverage and usage. There is also need for urgent development and deployment of non-pyrethroid based vector control tools.

Pub.: 17 Nov '15, Pinned: 07 Sep '17

When intensity of deltamethrin resistance in Anopheles gambiae s.l. leads to loss of Long Lasting Insecticidal Nets bio-efficacy: a case study in north Cameroon

Abstract: In Cameroon, insecticide resistance in Anopheles (An.) gambiae s.l. has been reported in several foci, prompting further investigations on associated patterns of Long-Lasting Insecticidal Nets (LLINs) bio-efficacy. The current study, conducted from June to August 2011, explored the intensity of deltamethrin resistance in An. gambiae s.l. from Pitoa and its impact on the residual bio-efficacy of LifeNet, a LLIN with deltamethrin incorporated into polypropylene nets (PND).Two-four days old females An. gambiae s.l. reared from larval collections in Pitoa were tested for susceptibility to DDT, permethrin and deltamethrin, using standard World Health Organization (WHO) tube assays. Intensity of deltamethrin resistance was explored using WHO tube assays, but across six working concentrations from 0.001 % to 0.5 %. Bio-efficacy of unwashed and washed PND was assessed using WHO cone test. Species identification and kdr 1014 genotyping were performed on mosquito samples that were not exposed to insecticides, using PCR-RFLP and HOLA methods respectively. The Kisumu reference susceptible strain of An. gambiae s.s. was used for comparisons.A total of 1895 An. gambiae s.l. specimens from Pitoa were used for resistance and PND bio-efficacy testing. This mosquito population was resistant to DDT, permethrin and deltamethrin, with 18–40 min knockdown times for 50 % of tested mosquitoes and 59–77 % mortality. Deltamethrin Resistance Ratio compared with the Kisumu strain was estimated at ≥500 fold. LifeNets were effective against the susceptible Kisumu (100 % knockdown (KD60min) and mortality) and the resistant Pitoa samples (95 % KD60min, 83–95 % mortality). However, the bio-efficacy gradually dropped against the Pitoa samples when nets were washed (X 2 = 35.887, df = 8, p < 0.001), and fell under the WHO efficacy threshold (80 % mortality and/or 95 % KD60min) between 10 and 15 washes. The Pitoa samples were composed of three sibling species: An. arabiensis (132/154, 86 %), An. coluzzii (19/154, 12 %) and An. gambiae s.s. (3/154, 2 %). The kdr L1014F allele was found only in An. coluzzii (Npositive = 13/19), at 34 % frequency and heterozygote stage. No specimen carried the kdr L1014S allele.The current study showed that LifeNet might still offer some protection against the resistant An. gambiae s.l. population from Pitoa, provided appropriate dose of insecticide is available on the nets.

Pub.: 08 Mar '16, Pinned: 07 Sep '17

Efficacy of the Olyset Duo net against insecticide-resistant mosquito vectors of malaria.

Abstract: Olyset Duo is a new long-lasting insecticidal net treated with permethrin (a pyrethroid) and pyriproxyfen, an insect growth regulator that disrupts the maturation of oocytes in mosquitoes exposed to the net. We tested the Olyset Duo net against pyrethroid-resistant Anopheles gambiae mosquitoes, which transmit malaria parasites, in laboratory bioassays and in a trial in Benin using experimental huts that closely resemble local habitations. Host-seeking mosquitoes that entered to feed were free to contact the occupied nets and were collected the next morning from exit traps. Surviving blood-fed mosquitoes were observed for effects on reproduction. Control nets were treated with pyrethroid only or pyriproxyfen only, and nets were tested unwashed and after 20 standardized washes. The Olyset Duo net showed improved efficacy and wash resistance relative to the pyrethroid-treated net in terms of mosquito mortality and prevention of blood feeding. The production of offspring among surviving blood-fed A. gambiae in the hut trial was reduced by the pyriproxyfen-treated net and the Olyset Duo net both before washing (90 and 71% reduction, respectively) and after washing (38 and 43% reduction, respectively). The degree of reproductive suppression in the hut trial was predicted by laboratory tunnel tests but not by cone bioassays. The overall reduction in reproductive rate of A. gambiae with the Olyset Duo net in the trial was 94% with no washing and 78% after 20 washes. The Olyset Duo net has the potential to provide community control of mosquito populations and reduce malaria transmission in areas of high insecticide resistance.

Pub.: 16 Sep '16, Pinned: 07 Sep '17