A pinboard by
Axel Leppert

PhD student, Karolinska Institutet


The understanding of small protein machineries and their role in neurodegenerative disorders, like Alzheimer disease on a molecular level.


BRI2 ectodomain affects Aβ42 fibrillation and tau truncation in human neuroblastoma cells.

Abstract: Alzheimer's disease (AD) is pathologically characterized by the presence of misfolded proteins such as amyloid beta (Aβ) in senile plaques, and hyperphosphorylated tau and truncated tau in neurofibrillary tangles (NFT). The BRI2 protein inhibits Aβ aggregation via its BRICHOS domain and regulates critical proteins involved in initiating the amyloid cascade, which has been hypothesized to be central in AD pathogenesis. We recently detected the deposition of BRI2 ectodomain associated with Aβ plaques and concomitant changes in its processing enzymes in early stages of AD. Here, we aimed to investigate the effects of recombinant BRI2 ectodomain (rBRI276-266) on Aβ aggregation and on important molecular pathways involved in early stages of AD, including the unfolded protein response (UPR), phosphorylation and truncation of tau, as well as apoptosis. We found that rBRI276-266 delays Aβ fibril formation, although less efficiently than the BRI2 BRICHOS domain (BRI2 residues 113-231). In human neuroblastoma SH-SY5Y cells, rBRI276-266 slightly decreased cell viability and increased up to two-fold the Bax/Bcl-2 ratio and the subsequent activity of caspases 3 and 9, indicating activation of apoptosis. rBRI276-266 upregulated the chaperone BiP but did not modify the mRNA expression of other UPR markers (CHOP and Xbp-1). Strikingly, rBRI276-266 induced the activation of GSK3β but not the phosphorylation of tau. However, exposure to rBRI276-266 significantly induced the truncation of tau, indicating that BRI2 ectodomain can contribute to NFT formation. Since BRI2 can also regulate the metabolism of Aβ, the current data suggests that BRI2 ectodomain is a potential nexus between Aβ, tau pathology and neurodegeneration.

Pub.: 23 Oct '14, Pinned: 04 Sep '17

Oligomeric structure and chaperone-like activity of Drosophila melanogaster mitochondrial small heat shock protein Hsp22 and arginine mutants in the alpha-crystallin domain.

Abstract: The structure and chaperone function of DmHsp22WT, a small Hsp of Drosophila melanogaster localized within mitochondria were examined. Mutations of conserved arginine mutants within the alpha-crystallin domain (ACD) domain (R105G, R109G, and R110G) were introduced, and their effects on oligomerization and chaperone function were assessed. Arginine to glycine mutations do not induce significant changes in tryptophan fluorescence, and the mutated proteins form oligomers that are of equal or smaller size than the wild-type protein. They all form oligomer with one single peak as determined by size exclusion chromatography. While all mutants demonstrate the same efficiency as the DmHsp22WT in a DTT-induced insulin aggregation assay, all are more efficient chaperones to prevent aggregation of malate dehydrogenase. Arginine mutants of DmHsp22 are efficient chaperones to retard aggregation of CS and Luc. In summary, this study shows that mutations of arginine to glycine in DmHsp22 ACD induce a number of structural changes, some of which differ from those described in mammalian sHsps. Interestingly, only the R110G-DmHsp22 mutant, and not the expected R109G equivalent to human R140-HspB1, R116-HspB4, and R120-HspB5, showed different structural properties compared with the DmHsp22WT.

Pub.: 09 Apr '17, Pinned: 04 Sep '17

BRICHOS domains efficiently delay fibrillation of amyloid β-peptide.

Abstract: Amyloid diseases such as Alzheimer, Parkinson, and prion diseases are associated with a specific form of protein misfolding and aggregation into oligomers and fibrils rich in β-sheet structure. The BRICHOS domain consisting of ∼100 residues is found in membrane proteins associated with degenerative and proliferative disease, including lung fibrosis (surfactant protein C precursor; pro-SP-C) and familial dementia (Bri2). We find that recombinant BRICHOS domains from Bri2 and pro-SP-C prevent fibril formation of amyloid β-peptides (Aβ(40) and Aβ(42)) far below the stoichiometric ratio. Kinetic experiments show that a main effect of BRICHOS is to prolong the lag time in a concentration-dependent, quantitative, and reproducible manner. An ongoing aggregation process is retarded if BRICHOS is added at any time during the lag phase, but it is too late to interfere at the end of the process. Results from circular dichroism and NMR spectroscopy, as well as analytical size exclusion chromatography, imply that Aβ is maintained as an unstructured monomer during the extended lag phase in the presence of BRICHOS. Electron microscopy shows that although the process is delayed, typical amyloid fibrils are eventually formed also when BRICHOS is present. Structural BRICHOS models display a conserved array of tyrosine rings on a five-stranded β-sheet, with inter-hydroxyl distances suited for hydrogen-bonding peptides in an extended β-conformation. Our data imply that the inhibitory mechanism is reliant on BRICHOS interfering with molecular events during the lag phase.

Pub.: 18 Jul '12, Pinned: 04 Sep '17