Quantcast


CURATOR
A pinboard by
Thumree Sarkar

Post-Doctoral Fellow, Indian Institute of Technology Delhi

PINBOARD SUMMARY

A study using active remote sensing satellite data to help understand features of cloud, which introduces the principle uncertainty in weather models. The work will generate key strategic knowledge about the precipitation susceptibility of clouds to aerosols, specially in the framework of the changing climate. The work will be particularly useful for climate modellers to improve cloud representations in the models for better simulations

3 ITEMS PINNED

Indian summer monsoon precipitating clouds: role of microphysical process rates

Abstract: The budget analysis of microphysical process rates based on Modern Era Retrospective-analysis for Research and Applications (MERRA) products are presented in the study. The relative importance of different microphysical process rates, which is crucial for GCMs, is investigated. The autoconversion and accretion processes are found to be vital for Indian Summer Monsoon (ISM). The map-to-map correlations are examined between observed precipitation and MERRA reanalysis. The pattern correlations connote the fidelity of the MERRA datasets used here. Results of other microphysical parameters (e.g. ice water content from CloudSat, high cloud fraction from CALIPSO and MODIS, latent heating from TRMM, cloud ice mixing ratio from MERRA) are presented in this study. The tropospheric temperature from reanalysis product of MERRA and NCEP are also analyzed. Furthermore, the linkages between cloud microphysics production rates and dynamics, which are important for North–South tropospheric temperature gradient for maintaining the ISM circulation, are also discussed. The study demonstrates the microphysical process rates, which are actually responsible for the cloud hydrometeors and precipitation formation on the monsoon intraseasonal oscillations timescale. Cloud to rain water auto-conversion and snow accretion rates are the dominant processes followed by the rain accretion. All these tendency terms replicates the similar spatial patterns as that of precipitation. The quantification of microphysical process rates and precipitation over different regions are shown here. The freezing rate is also imperative for the formation of cloud ice as revealed by the observation. Freezing rates at upper level and snow accretion at middle level may have effect on latent heating release. Further it can modulate the north–south temperature gradient which can influence the large-scale monsoon dynamics. The rain water evaporation is also considered as a key aspect for controlling the low level moisture convergence (source of water vapor) in ISM. This study has highlighted the importance of detailed microphysical production rates for warm and mixed-phase cloud processes, which is a major source of uncertainty in the climate models. Better understanding of these processes will definitely add value to the present generation climate models. Therefore the hypothesis/pathway emerged from the present study may be helpful for the future model development research.

Pub.: 25 Jun '15, Pinned: 09 Feb '18

CloudSat observations of multi layered clouds across the globe

Abstract: Abstract Vertically resolved multi-layer cloud distributions over the globe using 4 years of CloudSat/CALIPSO observations during 2007–2010 are discussed. The quantitative information on the frequency of occurrence of one- to five-layered clouds across the globe is established, which are of immense importance from the global climate standpoint. After segregating the CloudSat observations into different seasons, the 4 years of mean global maps of frequency of occurrence of one to five-layered clouds are discussed in details. These global maps provide much needed quantification of vertically resolved multi-layer clouds by revealing when and where the frequency of occurrence of multi-layer clouds are maximum including the number of layers. On an average, it is observed that over the globe one-, two-, three-, four- and five-layer clouds occur 53, 20, 3.5, 0.4 and 0.04 % of the time respectively. High fraction of single layer clouds is observed over the descending limbs of Hadley cell where relatively large lower tropospheric stability is found. The regions where multi-layer clouds are more frequent are identified and discussed along with large scale circulation. Apart from quantifying the frequency of occurrence of multi-layer clouds, the latitudinal distribution of zonal mean occurrence of cloud base and top altitudes of each cloud layer is constructed for boreal winter and summer. These analyses provide the cloud base and top altitudes of one to five-layered clouds, which are important to understand the vertical structure of the multi-layered clouds. The significance of the present study lies in establishing the global distribution of vertically resolved multi-layer clouds and the role of large-scale dynamics in controlling their distribution for the first time.AbstractVertically resolved multi-layer cloud distributions over the globe using 4 years of CloudSat/CALIPSO observations during 2007–2010 are discussed. The quantitative information on the frequency of occurrence of one- to five-layered clouds across the globe is established, which are of immense importance from the global climate standpoint. After segregating the CloudSat observations into different seasons, the 4 years of mean global maps of frequency of occurrence of one to five-layered clouds are discussed in details. These global maps provide much needed quantification of vertically resolved multi-layer clouds by revealing when and where the frequency of occurrence of multi-layer clouds are maximum including the number of layers. On an average, it is observed that over the globe one-, two-, three-, four- and five-layer clouds occur 53, 20, 3.5, 0.4 and 0.04 % of the time respectively. High fraction of single layer clouds is observed over the descending limbs of Hadley cell where relatively large lower tropospheric stability is found. The regions where multi-layer clouds are more frequent are identified and discussed along with large scale circulation. Apart from quantifying the frequency of occurrence of multi-layer clouds, the latitudinal distribution of zonal mean occurrence of cloud base and top altitudes of each cloud layer is constructed for boreal winter and summer. These analyses provide the cloud base and top altitudes of one to five-layered clouds, which are important to understand the vertical structure of the multi-layered clouds. The significance of the present study lies in establishing the global distribution of vertically resolved multi-layer clouds and the role of large-scale dynamics in controlling their distribution for the first time.

Pub.: 10 Sep '16, Pinned: 09 Feb '18