Quantcast


CURATOR
A pinboard by
this curator
PINBOARD SUMMARY

Platelets facilitate cancer progression and metastasis by: (1) forming aggregates with tumor cells; (2) inducing tumor growth, epithelial-mesenchymal transition, and invasion; (3) shielding circulating tumor cells from immune surveillance and killing; (4) facilitating tethering and arrest of circulating tumor cells; and (5) promoting angiogenesis and tumor cell establishment at distant sites

8 ITEMS PINNED

Platelets surrounding primary tumor cells are related to chemoresistance.

Abstract: Platelets are crucial components of the tumor microenvironment that function to promote tumor progression and metastasis. In the circulation, the interaction between tumor cells and platelets increases invasiveness, protects tumor cells from shear stress and immune surveillance, and facilitates tumor cell extravasation to distant sites. However, the role and presence of platelets in the primary tumor have not been fully determined. Here, we investigated the presence of platelets around breast cancer primary tumor cells and the associations between these cells. We further investigated the associations among platelets, tumor cells, chemoresistance, and epithelial-mesenchymal transition (EMT). We retrospectively analyzed data from 74 patients with human epidermal growth factor receptor 2 (HER2)‑negative breast cancer who underwent biopsies before treatment and subsequent neo-adjuvant chemotherapy. In biopsy specimens, we evaluated the expression of platelet-specific markers and EMT markers using immunohistochemistry. The associations among the expression of platelet‑specific markers in biopsy specimens, EMT, response to neo‑adjuvant chemotherapy, and survival were analyzed. The presence of platelets was observed in 44 out of 74 (59%) primary breast cancer biopsy specimens. Platelet‑positive tumor cells showed EMT‑like morphological changes and EMT marker expression. Primary tumor cells associated with platelets were less responsive to neo‑adjuvant chemotherapy (pCR rate: 10 vs. 50%, respectively; p=0.0001). Platelets were an independent predictor of the response to chemotherapy upon multivariable analysis (p<0.0001). In conclusion, there was a significant association between platelets surrounding primary tumor cells in the biopsy specimens and the chemotherapeutic response in breast cancer. Platelets surrounding primary tumor cells may represent novel predictors of chemotherapeutic responses.

Pub.: 29 Jun '16, Pinned: 25 Apr '17

A critical role of platelet TGF-β release in podoplanin-mediated tumour invasion and metastasis.

Abstract: The tumour microenvironment is critical for various characteristics of tumour malignancies. Platelets, as part of the tumour microenvironment, are associated with metastasis formation via increasing the rate of tumour embolus formation in microvasculature. However, the mechanisms underlying the ability of tumour cells to acquire invasiveness and extravasate into target organs at the site of embolization remain unclear. In this study, we reported that platelet aggregation-inducing factor podoplanin expressed on tumour cell surfaces were found to not only promote the formation of tumour-platelet aggregates via interaction with platelets, but also induced the epithelial-mesenchymal transition (EMT) of tumour cells by enhancing transforming growth factor-β (TGF-β) release from platelets. In vitro and in vivo analyses revealed that podoplanin-mediated EMT resulted in increased invasiveness and extravasation of tumour cells. Treatment of mice with a TGF-β-neutralizing antibody statistically suppressed podoplanin-mediated distant metastasis in vivo, suggesting that podoplanin promoted haematogenous metastasis in part by releasing TGF-β from platelets that was essential for EMT of tumour cells. Therefore, our findings suggested that blocking the TGF-β signalling pathway might be a promising strategy for suppressing podoplanin-mediated haematogenous metastasis in vivo.

Pub.: 09 Feb '17, Pinned: 25 Apr '17

The Role of Megakaryocytes in Breast Cancer Metastasis to Bone.

Abstract: Little is known about how megakaryocytes affect metastasis apart from serving as the source of platelets. We noted an increase in the number of megakaryocytes in the femurs of metastases-bearing athymic mice four weeks following intracardiac inoculation of MDA-MB-231 human breast cancer cells. How did the megakaryocytes relate to the metastases? Did megakaryocytes prepare a niche or did they increase in response to metastases? To test these possibilities, we examined two models of experimental metastasis, intracardiac inoculation of human MDA-MB-231 into athymic mice, and intramammary injection of mouse tumor cells, 4T1.2 (metastatic) or 67NR (non-metastatic) in BALB/c mice. In both models, metastatic, but not primary tumor growth was associated with increased megakaryopoiesis. At 4 weeks post injection, megakaryocytes increased ~ two-fold in the bone marrow of mice with MDA-MB-231 bone metastasis. BALB/c mice injected orthotopically with murine 4T1.2 cells showed extramedullary hematopoiesis resulting in a four-fold increase in megakaryocytes in the spleen. These findings led us to speculate that a reduction in megakaryocytes would result in reduced metastasis. Thrombopoietin knockout mice exhibited a 90% decrease in megakaryocytes compared to wild type mice. Nonetheless, they developed more aggressive metastasis than wild type. We also found with human clinical samples, an increase in megakaryocytes in the bone marrow of 75% (6/8) of patients with metastatic breast cancer compared to age and gender matched controls. The data suggested that the increase in megakaryocytes occurs in response to metastatic cells in the bone, and that megakaryocytes are in some measure protective against metastases.

Pub.: 17 Feb '17, Pinned: 25 Apr '17

Platelet GPIIb supports initial pulmonary retention but inhibits subsequent proliferation of melanoma cells during hematogenic metastasis.

Abstract: Platelets modulate the process of cancer metastasis. However, current knowledge on the direct interaction of platelets and tumor cells is mostly based on findings obtained in vitro. We addressed the role of the platelet fibrinogen receptor glycoprotein IIb (integrin αIIb) for experimental melanoma metastasis in vivo. Highly metastatic B16-D5 melanoma cells were injected intravenously into GPIIb-deficient (GPIIb-/-) or wildtype (WT) mice. Acute accumulation of tumor cells in the pulmonary vasculature was assessed in real-time by confocal videofluorescence microscopy. Arrest of tumor cells was dramatically reduced in GPIIb-/- mice as compared to WT. Importantly, we found that mainly multicellular aggregates accumulated in the pulmonary circulation of WT, instead B16-D5 aggregates were significantly smaller in GPIIb-/- mice. While pulmonary arrest of melanoma was clearly dependent on GPIIb in this early phase of metastasis, we also addressed tumor progression 10 days after injection. Inversely, and unexpectedly, we found that melanoma metastasis was now increased in GPIIb-/- mice. In contrast, GPIIb did not regulate local melanoma proliferation in a subcutaneous tumor model. Our data suggest that the platelet fibrinogen receptor has a differential role in the modulation of hematogenic melanoma metastasis. While platelets clearly support early steps in pulmonary metastasis via GPIIb-dependent formation of platelet-tumor-aggregates, at a later stage its absence is associated with an accelerated development of melanoma metastases.

Pub.: 03 Mar '17, Pinned: 25 Apr '17

Interface between breast cancer cells and the tumor microenvironment using platelet-rich plasma to promote tumor angiogenesis - influence of platelets and fibrin bundles on the behavior of breast tumor cells.

Abstract: Cancer progression is associated with an evolving tissue interface of direct epithelial-tumor microenvironment interactions. In biopsies of human breast tumors, extensive alterations in molecular pathways are correlated with cancer staging on both sides of the tumor-stroma interface. These interactions provide a pivotal paracrine signaling to induce malignant phenotype transition, the epithelial-mesenchymal transition (EMT). We explored how the direct contact between platelets-fibrin bundles primes metastasis using platelet-rich plasma (PRP) as a source of growth factors and mimics the provisional fibrin matrix between actively growing breast cancer cells and the tumor stroma. We have demonstrated PRP functions, modulating cell proliferation that is tumor-subtype and cancer cell-type-specific. Epithelial and stromal primary cells were prepared from breast cancer biopsies from 21 women with different cancer subtypes. Cells supplemented with PRP were immunoblotted with anti-phospho and total Src-Tyr-416, FAK-Try-925, E-cadherin, N-cadherin, TGF-β, Smad2, and Snail monoclonal antibodies. Breast tumor cells from luminal B and HER2 subtypes showed the most malignant profiles and the expression of thrombin and other classes of proteases at levels that were detectable through FRET peptide libraries. The angiogenesis process was investigated in the interface obtained between platelet-fibrin-breast tumor cells co-cultured with HUVEC cells. Luminal B and HER2 cells showed robust endothelial cell capillary-like tubes ex vivo. The studied interface contributes to the attachment of endothelial cells, provides a source of growth factors, and is a solid substrate. Thus, replacement of FBS supplementation with PRP supplementation represents an efficient and simple approach for mimicking the real multifactorial tumor microenvironment.

Pub.: 12 Feb '17, Pinned: 25 Apr '17

Tamoxifen Directly Inhibits Platelet Angiogenic Potential and Platelet-Mediated Metastasis.

Abstract: Platelets, which are mainly known for their role in hemostasis, are now known to play a crucial role in metastasis. Tamoxifen is a selective estrogen receptor modulator that is widely used for the treatment of breast cancer. Tamoxifen and its metabolites have been shown to directly impact platelet function, suggesting that this drug has additional mechanisms of action. The purpose of this study was to determine whether tamoxifen exerts antitumor effects through direct platelet inhibition.This study found that pretreatment with tamoxifen leads to a significant inhibition of platelet activation. Platelets exposed to tamoxifen released significantly lower amounts of proangiogenic regulator vascular endothelial growth factor. In vitro angiogenesis assays confirmed that tamoxifen pretreatment led to diminished capillary tube formation and decreased endothelial migration. Tamoxifen and its metabolite, 4-hydroxytamoxifen, also significantly inhibited the ability of platelets to promote metastasis in vitro. Using a membrane-based array, we identified several proteins associated with angiogenesis metastasis that were lower in activated releasate from tamoxifen-treated platelets, including angiogenin, CXCL1, CCL5, EGF, CXCL5, and PDGF-BB, whereas antiangiogenic angiopoietin-1 was elevated. Platelets isolated from patients on tamoxifen maintenance therapy were also found to have decreased activation responses, diminished vascular endothelial growth factor release, and lower angiogenic and metastatic potential.We demonstrate that tamoxifen and its metabolite 4-hydroxytamoxifen directly alter platelet function leading to decreased angiogenic and metastatic potential. Furthermore, this study supports the idea of utilizing targeted platelet therapies to inhibit the platelet's role in angiogenesis and malignancy.

Pub.: 06 Feb '17, Pinned: 25 Apr '17

Anticoagulation inhibits tumor cell-mediated release of platelet angiogenic proteins and diminishes platelet angiogenic response.

Abstract: Platelets are a reservoir for angiogenic proteins that are secreted in a differentially regulated process. Because of the propensity for clotting, patients with malignancy are often anticoagulated with heparin products, which paradoxically offer a survival benefit by an unknown mechanism. We hypothesized that antithrombotic agents alter the release of angiogenesis regulatory proteins from platelets. Our data revealed that platelets exposed to heparins released significantly decreased vascular endothelial growth factor (VEGF) in response to adenosine 5'-diphosphate or tumor cells (MCF-7 cells) and exhibited a decreased angiogenic potential. The releasate from these platelets contained decreased proangiogenic proteins. The novel anticoagulant fondaparinux (Xa inhibitor) demonstrated a similar impact on the platelet angiogenic potential. Because these anticoagulants decrease thrombin generation, we hypothesized that they disrupt signaling through the platelet protease-activated receptor 1 (PAR1) receptor. Addition of PAR1 antagonists to platelets decreased VEGF release and angiogenic potential. Exposure to a PAR1 agonist in the presence of anticoagulants rescued the angiogenic potential. In vivo studies demonstrated that platelets from anticoagulated patients had decreased VEGF release and angiogenic potential. Our data suggest that the mechanism by which antithrombotic agents increase survival and decrease metastasis in cancer patients is through attenuation of platelet angiogenic potential.

Pub.: 26 Sep '13, Pinned: 25 Apr '17

Identification of luminal breast cancers that establish a tumor-supportive macroenvironment defined by proangiogenic platelets and bone marrow-derived cells.

Abstract: Breast cancer recurrence rates vary following treatment, suggesting that tumor cells disseminate early from primary sites but remain indolent indefinitely before progressing to symptomatic disease. The reasons why some indolent disseminated tumors erupt into overt disease are unknown. We discovered a novel process by which certain luminal breast cancer (LBC) cells and patient tumor specimens (LBC "instigators") establish a systemic macroenvironment that supports outgrowth of otherwise-indolent disseminated tumors ("responders"). Instigating LBCs secrete cytokines that are absorbed by platelets, which are recruited to responding tumor sites where they aid vessel formation. Instigator-activated bone marrow cells enrich responding tumor cell expression of CD24, an adhesion molecule for platelets, and provide a source of VEGF receptor 2(+) tumor vessel cells. This cascade results in growth of responder adenocarcinomas and is abolished when platelet activation is inhibited by aspirin. These findings highlight the macroenvironment as an important component of disease progression that can be exploited therapeutically.Currently, processes that mediate progression of otherwise indolent tumors are not well understood, making it difficult to accurately predict which cancer patients are likely to relapse. Our findings highlight the macroenvironment as an important component of disease progression that can be exploited to more accurately identify patients who would benefit from adjuvant therapy.

Pub.: 17 Aug '12, Pinned: 25 Apr '17