Quantcast


CURATOR
A pinboard by
Mengran Gou

PhD Candidate, Northeastern University

PINBOARD SUMMARY

Performed systematic evaluation on existing re-id features and algorithms.

Person re-identification (re-id) is a critical problem in video analytics applications such as security and surveillance. The public release of several datasets and code for vision algorithms has facilitated rapid progress in this area over the last few years. However, directly comparing re-id algorithms reported in the literature has become difficult since a wide variety of features, experimental protocols, and evaluation metrics are employed. In order to address this need, we present an extensive review and performance evaluation of single- and multi-shot re-id algorithms. The experimental protocol incorporates the most recent advances in both feature extraction and metric learning. To ensure a fair comparison, all of the approaches were implemented using a unified code library that includes 8 feature extraction algorithms and 19 metric learning and ranking techniques. All approaches were evaluated using a new large-scale dataset that closely mimics a real-world problem setting, in addition to 13 other publicly available datasets: VIPeR, GRID, CAVIAR, 3DPeS, PRID, V47, WARD, SAIVT-SoftBio, CUHK03, RAiD, iLIDSVID, HDA+ and Market1501. The evaluation codebase and results will be made publicly available for community use.

9 ITEMS PINNED

Hierarchical Gaussian Descriptors with Application to Person Re-Identification

Abstract: Describing the color and textural information of a person image is one of the most crucial aspects of person re-identification (re-id). In this paper, we present novel meta-descriptors based on a hierarchical distribution of pixel features. Although hierarchical covariance descriptors have been successfully applied to image classification, the mean information of pixel features, which is absent from the covariance, tends to be the major discriminative information for person re-id. To solve this problem, we describe a local region in an image via hierarchical Gaussian distribution in which both means and covariances are included in their parameters. More specifically, the region is modeled as a set of multiple Gaussian distributions in which each Gaussian represents the appearance of a local patch. The characteristics of the set of Gaussians are again described by another Gaussian distribution. In both steps, we embed the parameters of the Gaussian into a point of Symmetric Positive Definite (SPD) matrix manifold. By changing the way to handle mean information in this embedding, we develop two hierarchical Gaussian descriptors. Additionally, we develop feature norm normalization methods with the ability to alleviate the biased trends that exist on the descriptors. The experimental results conducted on five public datasets indicate that the proposed descriptors achieve remarkably high performance on person re-id.

Pub.: 14 Jun '17, Pinned: 29 Jun '17

Person Re-identification by Local Maximal Occurrence Representation and Metric Learning

Abstract: Person re-identification is an important technique towards automatic search of a person's presence in a surveillance video. Two fundamental problems are critical for person re-identification, feature representation and metric learning. An effective feature representation should be robust to illumination and viewpoint changes, and a discriminant metric should be learned to match various person images. In this paper, we propose an effective feature representation called Local Maximal Occurrence (LOMO), and a subspace and metric learning method called Cross-view Quadratic Discriminant Analysis (XQDA). The LOMO feature analyzes the horizontal occurrence of local features, and maximizes the occurrence to make a stable representation against viewpoint changes. Besides, to handle illumination variations, we apply the Retinex transform and a scale invariant texture operator. To learn a discriminant metric, we propose to learn a discriminant low dimensional subspace by cross-view quadratic discriminant analysis, and simultaneously, a QDA metric is learned on the derived subspace. We also present a practical computation method for XQDA, as well as its regularization. Experiments on four challenging person re-identification databases, VIPeR, QMUL GRID, CUHK Campus, and CUHK03, show that the proposed method improves the state-of-the-art rank-1 identification rates by 2.2%, 4.88%, 28.91%, and 31.55% on the four databases, respectively.

Pub.: 06 May '15, Pinned: 29 Jun '17