Quantcast


CURATOR
A pinboard by
this curator

PhD Student, Peter Doherty Institute

PINBOARD SUMMARY

Understanding how viral protein nuclear transport is important for viral replication.

We are trying to understand how West Nile virus is able to manipulate specific host cell processes that allow it to hide from the immune response, and allow it to replicate within cells. We are currently looking at understanding how and why RNA viruses send proteins into the nucleus

6 ITEMS PINNED

Regulated nucleocytoplasmic trafficking of viral gene products: a therapeutic target?

Abstract: The study of viral proteins and host cell factors that interact with them has represented an invaluable contribution to understanding of the physiology as well as associated pathology of key eukaryotic cell processes such as cell cycle regulation, signal transduction and transformation. Similarly, knowledge of nucleocytoplasmic transport is based largely on pioneering studies performed on viral proteins that enabled the first sequences responsible for the facilitated transport through the nuclear pore to be identified. The study of viral proteins has also enabled the discovery of several nucleocytoplasmic regulatory mechanisms, the best characterized being through phosphorylation. Recent delineation of the mechanisms whereby phosphorylation regulates nuclear import and export of key viral gene products encoded by important human pathogens such as human cytomegalovirus dengue virus and respiratory syncytial virus has implications for the development of antiviral therapeutics. In particular, the development of specific and effective kinase inhibitors makes the idea of blocking viral infection by inhibiting the phosphorylation-dependent regulation of viral gene product nuclear transport a real possibility. Additionally, examination of a chicken anemia virus (CAV) protein able to target selectively into the nucleus of tumor but not normal cells, as specifically regulated by phosphorylation, opens the exciting possibility of cancer cell-specific nuclear targeting. The study of nucleoplasmic transport may thus enable the development not only of new antiviral approaches, but also contribute to anti-cancer strategies.

Pub.: 16 Oct '07, Pinned: 28 Jul '17

Nuclear localization of flavivirus RNA synthesis in infected cells.

Abstract: Flaviviral replication is believed to be exclusively cytoplasmic, occurring within virus-induced membrane-bound replication complexes in the host cytoplasm. Here we show that a significant proportion (20%) of the total RNA-dependent RNA polymerase (RdRp) activity from cells infected with West Nile virus, Japanese encephalitis virus (JEV), and dengue virus is resident within the nucleus. Consistent with this, the major replicase proteins NS3 and NS5 of JEV also localized within the nucleus. NS5 was found distributed throughout the nucleoplasm, but NS3 was present at sites of active flaviviral RNA synthesis, colocalizing with NS5, and visible as distinct foci along the inner periphery of the nucleus by confocal and immunoelectron microscopy. Both these viral replicase proteins were also present in the nuclear matrix, colocalizing with the peripheral lamina, and revealed a well-entrenched nuclear location for the viral replication complex. In keeping with this observation, antibodies to either NS3 or NS5 coimmunoprecipitated the other protein from isolated nuclei along with newly synthesized viral RNA. Taken together these data suggest an absolute requirement for both of the replicase proteins for nucleus-localized synthesis of flavivirus RNA. Thus, we conclusively demonstrate for the first time that the host cell nucleus functions as an additional site for the presence of functionally active flaviviral replicase complex.

Pub.: 16 May '06, Pinned: 28 Jul '17