A pinboard by
Umar Manzoor

Postdoc, Tulane University


The extraction of spatial semantics is important in many real-world applications such as geographical information systems, robotics and navigation, semantic search, etc. Moreover, spatial semantics are the most relevant semantics related to the visualization of language. The goal of multimodal spatial role labeling task is to extract spatial information from free text while exploiting accompanying images. This task is a multimodal extension of spatial role labeling task which has been previously introduced as a semantic evaluation task in the SemEval series. In this research, we provide an overview of the task of multimodal spatial role labeling. We describe the task, sub-tasks, corpora, annotations, evaluation metrics, and the results of the baseline and the task participant.


Machine learning and microsimulation techniques on the prognosis of dementia: A systematic literature review.

Abstract: Dementia is a complex disorder characterized by poor outcomes for the patients and high costs of care. After decades of research little is known about its mechanisms. Having prognostic estimates about dementia can help researchers, patients and public entities in dealing with this disorder. Thus, health data, machine learning and microsimulation techniques could be employed in developing prognostic estimates for dementia.The goal of this paper is to present evidence on the state of the art of studies investigating and the prognosis of dementia using machine learning and microsimulation techniques.To achieve our goal we carried out a systematic literature review, in which three large databases-Pubmed, Socups and Web of Science were searched to select studies that employed machine learning or microsimulation techniques for the prognosis of dementia. A single backward snowballing was done to identify further studies. A quality checklist was also employed to assess the quality of the evidence presented by the selected studies, and low quality studies were removed. Finally, data from the final set of studies were extracted in summary tables.In total 37 papers were included. The data summary results showed that the current research is focused on the investigation of the patients with mild cognitive impairment that will evolve to Alzheimer's disease, using machine learning techniques. Microsimulation studies were concerned with cost estimation and had a populational focus. Neuroimaging was the most commonly used variable.Prediction of conversion from MCI to AD is the dominant theme in the selected studies. Most studies used ML techniques on Neuroimaging data. Only a few data sources have been recruited by most studies and the ADNI database is the one most commonly used. Only two studies have investigated the prediction of epidemiological aspects of Dementia using either ML or MS techniques. Finally, care should be taken when interpreting the reported accuracy of ML techniques, given studies' different contexts.

Pub.: 01 Jul '17, Pinned: 04 Jul '17

Describing the performance of U.S. hospitals by applying big data analytics.

Abstract: Public reporting of measures of hospital performance is an important component of quality improvement efforts in many countries. However, it can be challenging to provide an overall characterization of hospital performance because there are many measures of quality. In the United States, the Centers for Medicare and Medicaid Services reports over 100 measures that describe various domains of hospital quality, such as outcomes, the patient experience and whether established processes of care are followed. Although individual quality measures provide important insight, it is challenging to understand hospital performance as characterized by multiple quality measures. Accordingly, we developed a novel approach for characterizing hospital performance that highlights the similarities and differences between hospitals and identifies common patterns of hospital performance. Specifically, we built a semi-supervised machine learning algorithm and applied it to the publicly-available quality measures for 1,614 U.S. hospitals to graphically and quantitatively characterize hospital performance. In the resulting visualization, the varying density of hospitals demonstrates that there are key clusters of hospitals that share specific performance profiles, while there are other performance profiles that are rare. Several popular hospital rating systems aggregate some of the quality measures included in our study to produce a composite score; however, hospitals that were top-ranked by such systems were scattered across our visualization, indicating that these top-ranked hospitals actually excel in many different ways. Our application of a novel graph analytics method to data describing U.S. hospitals revealed nuanced differences in performance that are obscured in existing hospital rating systems.

Pub.: 01 Jul '17, Pinned: 04 Jul '17

Structure-based sampling and self-correcting machine learning for accurate calculations of potential energy surfaces and vibrational levels.

Abstract: We present an efficient approach for generating highly accurate molecular potential energy surfaces (PESs) using self-correcting, kernel ridge regression (KRR) based machine learning (ML). We introduce structure-based sampling to automatically assign nuclear configurations from a pre-defined grid to the training and prediction sets, respectively. Accurate high-level ab initio energies are required only for the points in the training set, while the energies for the remaining points are provided by the ML model with negligible computational cost. The proposed sampling procedure is shown to be superior to random sampling and also eliminates the need for training several ML models. Self-correcting machine learning has been implemented such that each additional layer corrects errors from the previous layer. The performance of our approach is demonstrated in a case study on a published high-level ab initio PES of methyl chloride with 44 819 points. The ML model is trained on sets of different sizes and then used to predict the energies for tens of thousands of nuclear configurations within seconds. The resulting datasets are utilized in variational calculations of the vibrational energy levels of CH3Cl. By using both structure-based sampling and self-correction, the size of the training set can be kept small (e.g., 10% of the points) without any significant loss of accuracy. In ab initio rovibrational spectroscopy, it is thus possible to reduce the number of computationally costly electronic structure calculations through structure-based sampling and self-correcting KRR-based machine learning by up to 90%.

Pub.: 03 Jul '17, Pinned: 04 Jul '17