Quantcast


Curator

A pinboard by Yann Gor'dan

As a racing & track day fan i've collated research that addresses medicine in the motorsport world.

Pinboard Summary

Motorsport is dangerous - that's part of the attraction, but what is science doing to make it safer?

23 items pinned

On-scene treatment of spinal injuries in motor sports.

Abstract: Because spinal cord injuries can have fatal consequences for injured race car drivers, prehospital treatment of spinal injuries is a major concern in motor sports. A structured procedure for assessing trauma patients and their treatment should follow established ABCDE principles. Only then, a stable patient could be further examined and appropriate measures can be undertaken. For patients in an acute life-threatening condition, rapid transport must be initiated and should not be delayed by measures that are not indicated. If a competitor must first be extricated from the racing vehicle, the correct method of extrication must be chosen. To avoid secondary injury to the spine after a racing accident, in-line extrication from the vehicle and immobilization of the patient are standard procedures in motor sports and have been used for decades. Since immobilization can be associated with disadvantages and complications, the need for immobilization of trauma patients outside of motor sports medicine has become the subject of an increasing number of reports in the scientific literature. Even in motor sports, where specific safety systems that offer spinal protection are present, the indications for spinal immobilization need to be carefully considered rather than being blindly adopted as a matter of course. The aim of this article is to use recent literature to present an overview about the treatment of spinal injuries in motor sports. Further, we present a new protocol for indications for immobilizing the spine in motor sports that is based on the ABCDE principles and takes into account the condition of the patient.

Pub.: 23 Dec '16, Pinned: 09 Feb '17

Ototoxic occupational exposures for a stock car racing team: II. chemical surveys.

Abstract: The National Institute for Occupational Safety and Health (NIOSH) conducted a series of surveys to evaluate occupational exposure to noise and potentially ototoxic chemical agents among members of a professional stock car racing team. Exposure assessments included site visits to the team's race shop and a worst-case scenario racetrack. During site visits to the race team's shop, area samples were collected to measure exposures to potentially ototoxic chemicals, including, organic compounds (typical of solvents), metals, and carbon monoxide (CO). Exposures to these chemicals were all below their corresponding Occupational Safety and Health Administration (OSHA) permissible exposure limits (PELs), NIOSH recommended exposure limits (RELs), and American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit values (TLVs). During site visits to the racetrack, area and personal samples were collected for organic compounds, lead, and CO in and around the "pit" area where the cars undergo race preparation and service during the race. Exposures to organic compounds and lead were either nondetectable or too low to quantify. Twenty-five percent of the CO time-weighted average concentrations exceeded the OSHA PEL, NIOSH REL, and ACGIH TLV after being adjusted for a 10-hour workday. Peak CO measurements exceeded the NIOSH recommended ceiling limit of 200 ppm. Based on these data, exposures to potentially ototoxic chemicals are probably not high enough to produce an adverse effect greater than that produced by the high sound pressure levels alone. However, carbon monoxide levels occasionally exceeded all evaluation criteria at the racetrack.

Pub.: 13 Jul '05, Pinned: 13 Sep '16

Responses of elite road motorcyclists to racing in tropical conditions: a case study.

Abstract: Anecdotal reports suggest that elite road motorcyclists suffer from high core body temperatures and physiological and perceptual strain when competing in hot conditions.Four male non-heat-acclimatized elite motorcyclists (3 Superbike, 1 Supersport) had their gastrointestinal temperature, heart rate, and respiratory rate measured and recorded throughout practice, qualifying, and race sessions of an Australian Superbike and Supersport Championship round contested in tropical conditions. Physiological strain was calculated during the sessions, and fluid-balance measures were taken during practice and qualifying. Rider thermal sensation was assessed immediately postsession.Mean ambient temperature and relative humidity were 29.5-30.2°C and 64.5-68.7%, respectively, across the sessions. Gastrointestinal temperature rose from 37.6°C to 37.7°C presession at a median rate of 0.035°C, 0.037°C ,and 0.067°C/min during practice, qualifying, and race sessions to reach medians of 38.9°C, 38.8°C, and 39.1°C postsession, respectively. The peak postsession gastrointestinal temperature was 39.8°C. Median heart rates were ~164, 160, and 177 beats/min during the respective practice, qualifying, and race sessions, contributing to median physiological strain of 5.5, 5.6, and 6.2 across the sessions. Sweat rates were 1.01 and 0.90 L/h during practice and qualifying sessions, while rider thermal sensation was very hot after each session.This investigation confirms that elite road motorcyclists endure moderate to high physiological strain during practice, qualifying, and race sessions, exhibiting more-rapid rates of body-heat storage, higher core body temperatures, and higher physiological and perceptual strain than their stock-car-racing counterparts when competing in tropical conditions.

Pub.: 15 Jan '14, Pinned: 13 Sep '16

Physical characteristics of experienced and junior open-wheel car drivers.

Abstract: Despite the popularity of open-wheel car racing, scientific literature about the physical characteristics of competitive race car drivers is scarce. The purpose of this study was to compare selected fitness parameters of experienced and junior open-wheel race car drivers. The experienced drivers consisted of five Formula One, two GP2 and two Formula 3 drivers, and the nine junior drivers drove in the Formula Master, Koenig, BMW and Renault series. The following fitness parameters were tested: multiple reactions, multiple anticipation, postural stability, isometric upper body strength, isometric leg extension strength, isometric grip strength, cyclic foot speed and jump height. The group differences were calculated using the Mann-Whitney U-test. Because of the multiple testing strategy used, the statistical significance was Bonferroni corrected and set at P < 0.004. Significant differences between the experienced and junior drivers were found only for the jump height parameter (P = 0.002). The experienced drivers tended to perform better in leg strength (P = 0.009), cyclic foot speed (P = 0.024) and grip strength (P = 0.058). None of the other variables differed between the groups. The results suggested that the experienced drivers were significantly more powerful than the junior drivers: they tended to be quicker and stronger (18% to 25%) but without statistical significance. The experienced drivers demonstrated excellent strength and power compared with other high-performance athletes.

Pub.: 04 Sep '12, Pinned: 12 Sep '16

It's not all in your car: functional and structural correlates of exceptional driving skills in professional racers.

Abstract: Driving is a complex behavior that requires the integration of multiple cognitive functions. While many studies have investigated brain activity related to driving simulation under distinct conditions, little is known about the brain morphological and functional architecture in professional competitive driving, which requires exceptional motor and navigational skills. Here, 11 professional racing-car drivers and 11 "naïve" volunteers underwent both structural and functional brain magnetic resonance imaging (MRI) scans. Subjects were presented with short movies depicting a Formula One car racing in four different official circuits. Brain activity was assessed in terms of regional response, using an Inter-Subject Correlation (ISC) approach, and regional interactions by mean of functional connectivity. In addition, voxel-based morphometry (VBM) was used to identify specific structural differences between the two groups and potential interactions with functional differences detected by the ISC analysis. Relative to non-experienced drivers, professional drivers showed a more consistent recruitment of motor control and spatial navigation devoted areas, including premotor/motor cortex, striatum, anterior, and posterior cingulate cortex and retrosplenial cortex, precuneus, middle temporal cortex, and parahippocampus. Moreover, some of these brain regions, including the retrosplenial cortex, also had an increased gray matter density in professional car drivers. Furthermore, the retrosplenial cortex, which has been previously associated with the storage of observer-independent spatial maps, revealed a specific correlation with the individual driver's success in official competitions. These findings indicate that the brain functional and structural organization in highly trained racing-car drivers differs from that of subjects with an ordinary driving experience, suggesting that specific anatomo-functional changes may subtend the attainment of exceptional driving performance.

Pub.: 27 Nov '14, Pinned: 12 Sep '16

The case for driver science in motorsport: a review and recommendations.

Abstract: When discussing sports and the athletes who participate in them, it has long been recognized that fitness is a prerequisite for optimal performance. The goal of training to improve fitness levels in athletes is ultimately to minimize the stress that the body experiences during competition. When it comes to the topic of racecar drivers, however, drivers and their trainers have largely been left to their own devices to figure out the stressors and the areas of specific training focus. Unfortunately, racecar drivers have battled the stereotype that they are not athletes, and with little regard for them as athletes, drivers are seldom the focus of scientific research related to their performance. Like the cars they drive, driver-athletes are complex, but from a physiological perspective. However, unlike the cars they drive, driver-athletes have not been examined, evaluated, and tweaked to the same degree. The purpose of this review is two-fold: first, by examining the available literature, to make the case for new research into the driver's role in the driver-car system (i.e. driver science) and the stresses experienced; second, to make the case for more extensive use of microtechnology in the real-time monitoring of driver-athletes. With the miniaturization of sensors and the advent of portable data storage devices, the prospect of quantifying the stresses unique to the driver are no longer as daunting, and the relative impossibility and difficulties associated with measuring the driver-athlete in real-time no longer need to be as challenging. Using microtechnology in the assessment of the driver-athlete and with a more public discussion and dissemination of information on the topic of driver science, the scientific community has the opportunity to quantify that which has been largely assumed and speculated. The current article will offer the following recommendations: first, rather than examining a singular physiological stressor, to examine the interaction of stressors; second, to examine variables/stressors that are more representative of the changing driver demographics; third, to measure drivers in real-time during actual race events; lastly, to work to develop training programs that more accurately apply to the driver and the stresses experienced. In uncovering this information, there is an opportunity to contribute to racing becoming that much safer, that much more competitive, and that much more comprehensive for the driver, the team, and the sport.

Pub.: 18 Apr '13, Pinned: 12 Sep '16

Optimizing the physical conditioning of the NASCAR sprint cup pit crew athlete.

Abstract: Stock car racing is the largest spectator sport in the United States. As a result, National Association for Stock Car Automobile Racing (NASCAR) Sprint Cup teams have begun to invest in strength and conditioning programs for their pit crew athletes. However, there is limited knowledge regarding the physical characteristics of elite NASCAR pit crew athletes, how the NASCAR Sprint Cup season affects basic physiological parameters such as body composition, and what is the most appropriate physical training program that meets the needs of a pit crew athlete. We conducted 3 experiments involving Sprint Cup motorsport athletes to determine predictors of success at the elite level, seasonal physiological changes, and appropriate physical training programs. Our results showed that hamstring flexibility (p = 0.015) and the score on the 2-tire front run test (p = 0.012) were significant predictors of NASCAR Sprint Cup Pit Crew athlete performance. Additionally, during the off season, pit crew athletes lost lean body mass, which did not return until the middle of the season. Therefore, a strength and conditioning program was developed to optimize pit crew athlete performance throughout the season. Implementation of this strength and conditioning program in 1 NASCAR Sprint Cup team demonstrated that pit crew athletes were able to prevent lean body mass loss and have increased muscle power output from the start of the season to the end of the season.

Pub.: 01 Oct '14, Pinned: 12 Sep '16

Elite Motorcycle Racing: Crash Types and Injury Patterns in the MotoGP Class.

Abstract: Crashes are a small but regular feature of elite motorcycle racing. These crashes provide a novel opportunity to benchmark and analyze motorcycle crash mechanics, crash types, and associated injuries at high speeds in a cohort of riders who are well protected and in a controlled environment.The purpose was to benchmark the prevalence of injuries, categorize crash subtypes, and determine associated injury patterns.This was an institutional review board-approved, prospective observational cohort study of MotoGP riders for 1 racing season in 3 venues. Accident type was determined by race-marshal report and visual analysis of race footage for each crash. Accident types were defined as lowside (falling toward the inside of the turn), highside (falling over and toward the outside of the turn), and topside (going over the handlebars of the motorcycle). Specific injuries and hospital admission data were collected using a standardized data collection form. Basic descriptive statistics were performed on all categorical variables. We used the exact binomial test examine the association between accident type and retirement from race, transport to medical building, transport to hospital, and injuries sustained.Crash prevalence was 9.7 per hundred rider hours. There were 78 crashes: 58 lowsides, 13 highsides, 2 topsides, and 5 indeterminate. In the lowside group (n = 58), 19 (95% confidence interval [CI], 0.21-0.46) riders retired, 0 required emergent transportation to the track facility or to the hospital, and 1 (95% CI, <0.1-0.9) significant injury was noted. In the highside group (n = 13), 10 (95% CI, 0.46-0.95) retired, 9 (95% CI, 0.39-0.91) were transported to the track medical facility, and 3 (95% CI, 0.05-0.54) were admitted to the hospital. In the highside group, there were 7 (95% CI, 0.25-0.81) significant injuries. In the topside group, both riders were retired with 1 hospital admission. Lowside crashes had a lower rate of retirement from race, emergent transport, and significant injuries compared with highside crashes.Lowside crashes are lower risk than highside crashes. Most highside crashes are caused by oversteering to prevent an impending lowside crash. Strategies to reduce oversteering to prevent a lowside crash may reduce highside crashes, enhance the safety for riders in MotoGP racing, and be applicable to recreational motorcycle riding.

Pub.: 20 Jul '16, Pinned: 12 Sep '16

Physiological strain of stock car drivers during competitive racing.

Abstract: Heat strain experienced by motorsport athletes competing in National Association for Stock Car Automobile Racing (NASCAR) may be significant enough to impair performance or even result in a life-threatening accident. There is a need to carefully quantify heat strain during actual NASCAR race competitions in order to faithfully represent the magnitude of the problem and conceptualize future mitigation practices. The purpose of this investigation was to quantify the thermoregulatory and physiological strain associated with competitive stock car driving. Eight male stock car drivers (29.0±10.0yr; 176.2±3.3cm, 80.6±15.7kg) participated in sanctioned stock car races. Physiological measurements included intestinal core (Tc) and skin (Tsk) temperatures, heart rate (HR), blood pressure, and body mass before and after completion of the race. Pre-race Tc was 38.1±0.1°C which increased to 38.6±0.2°C post-race (p=0.001). Tsk increased from 36.1±0.2°C pre-race to 37.3±0.3°C post-race (p=0.001) whereas the core-to-skin temperature gradient decreased from a pre-race value of 2.0±0.3°C to 1.3±0.3°C post-race (p=0.005). HRs post-race were 80±0.1% of the drivers' age-predicted maximum HR. Physiological Strain Index (PSI) post-race was 4.9, which indicates moderate strain. Drivers' thermal sensation based on the ASHRAE Scale increased from 1.3±0.5 to 2.8±0.4, and their perception of exertion (RPE) responses also increased from 8.4±1.6 to 13.9±1.8 after competition. Heat strain associated with competitive stock car racing is significant. These findings suggest the need for heat mitigation practices and provide evidence that motorsport should consider strategies to become heat acclimatized to better meet the thermoregulatory and cardiovascular challenges of motorsport competition.

Pub.: 05 Aug '14, Pinned: 12 Sep '16

Physical demands, injuries, and conditioning practices of stock car drivers.

Abstract: The purpose of this study was to assess the physical demands, injuries, and conditioning practices of stock car drivers. Forty stock car drivers from 27 states in the United States participated in the interviews for 43.9 ± 13.9 minutes. The interviews examined background information, the physical demands of racing, injuries associated with racing, and the athletic and fitness background and practices of the subjects. Numerical data were analyzed using Pearson's correlation coefficients. Responses to open-ended questions were analyzed using inductive content analysis. Results revealed significant correlation between track points standings and the length of the resistance training sessions (R = -0.71, p = 0.002) and subject self-assessment of their fitness (R = -0.53, p = 0.045). Results also revealed that "upper-body strength" was identified as the most important physical demand. Extreme fatigue was the most common feeling after a demanding race. Subjects reported that shoulder fatigue was the most common form of muscle soreness experienced after a race. Back and torso injuries were the most common injury, although head injuries most frequently required medical attention. The subjects' biggest fear was fire, followed closely by head and neck injury. The bench press and running were the most commonly performed resistance training and cardiovascular exercises, respectively. Subjects reported that their highest motivation for training was to improve their racing performance. Many subjects had athletic backgrounds with football identified as the sport they had most commonly participated in. This study provides additional detailed information. Results of this study can assist strength and conditioning professionals in the development of strength and conditioning programs for performance enhancement and injury prevention that are specific to the needs of this population of athletes.

Pub.: 21 Apr '12, Pinned: 12 Sep '16

A revolution in preventing fatal craniovertebral junction injuries: lessons learned from the Head and Neck Support device in professional auto racing.

Abstract: Fatal craniovertebral junction (CVJ) injuries were the most common cause of death in high-speed motor sports prior to 2001. Following the death of a mutual friend and race car driver, Patrick Jacquemart (1946-1981), biomechanical engineer Dr. Robert Hubbard, along with race car driver and brother-in-law Jim Downing, developed the concept for the Head and Neck Support (HANS) device to prevent flexion-distraction injuries during high-velocity impact. Biomechanical testing showed that neck shear and loading forces experienced during collisions were 3 times the required amount for a catastrophic injury. Crash sled testing with and without the HANS device elucidated reductions in neck tension, neck compression, head acceleration, and chest acceleration experienced by dummies during high-energy crashes. Simultaneously, motor sports accidents such as Dale Earnhardt Sr.'s fatal crash in 2001 galvanized public opinion in favor of serious safety reform. Analysis of Earnhardt's accident demonstrated that his car's velocity parallel to the barrier was more than 150 miles per hour (mph), with deceleration upon impact of roughly 43 mph in a total of 0.08 seconds. After careful review, several major racing series such as the National Association for Stock Car Auto Racing (NASCAR) and Championship Auto Racing Team (CART) made major changes to ensure the safety of drivers at the turn of the 21st century. Since the rule requiring the HANS device in professional auto racing series was put in place, there has not been a single reported case of a fatal CVJ injury.

Pub.: 13 Jul '16, Pinned: 12 Sep '16

Upper Extremity Injuries in NASCAR Drivers and Pit Crew: An Epidemiological Study.

Abstract: Understanding the position-specific musculoskeletal forces placed on the body of athletes facilitates treatment, prevention, and return-to-play decisions. While position-specific injuries are well documented in most major sports, little is known about the epidemiology of position-specific injuries in National Association for Stock Car Automobile Racing (NASCAR) drivers and pit crew.To investigate position-specific upper extremity injuries in NASCAR drivers and pit crew members.Descriptive epidemiological study.A retrospective chart review was performed to assess position-specific injuries in NASCAR drivers and pit crew members. Included in the study were patients seen by a single institution between July 2003 and October 2014 with upper extremity injuries from race-related NASCAR events or practices. Charts were reviewed to identify the diagnosis, mechanism of injury, and position of each patient.A total of 226 NASCAR team members were treated between July 2003 and October 2014. Of these, 118 injuries (52%) occurred during NASCAR racing events or practices. The majority of these injuries occurred in NASCAR changers (42%), followed by injuries in drivers (16%), carriers (14%), jack men (11%), fuel men (9%), and utility men (8%). The majority of the pit crew positions are at risk for epicondylitis, while drivers are most likely to experience neuropathies, such as hand-arm vibration syndrome. The changer sustains the most hand-related injuries (42%) on the pit crew team, while carriers commonly sustain injuries to their digits (29%).Orthopaedic injuries in NASCAR vary between positions. Injuries in NASCAR drivers and pit crew members are a consequence of the distinctive forces associated with each position throughout the course of the racing season. Understanding these forces and position-associated injuries is important for preventive measures and facilitates diagnosis and return-to-play decisions so that each team can function at its maximal efficiency.

Pub.: 11 Mar '16, Pinned: 12 Sep '16