A pinboard by
this curator

PhD student, Neuroimmunology Lab, Department of Biomedical Research (DBMR), Bern, Switzerland


Both ischemic stroke and multiple sclerosis (MS) are neurologic diseases affecting a large proportion of people and can cause severe physical and cognitive disability. Putatively, both cerebral ischemia and CNS autoimmunity share some downstream mechanisms. For example, an upregulation of hypoxic markers is demonstrated in acute MS lesions in humans and the murine model disease. Inflammatory patterns secondary to an ischemic hit resemble those of autoimmune disorders. Yet, the latter seem not only to have detrimental effects, but may have also regenerative potential. There is even evidence of not only shared pathways, but also mutual interactions of these pathomechanisms.


Production of neurotrophins by activated T cells: implications for neuroprotective autoimmunity.

Abstract: Neurotrophins (NTs) promote neuronal survival and maintenance during development and after injury. However, their role in the communication between the nervous system and the immune system is not yet clear. We observed recently that passively transferred activated T cells of various antigen specificities home to the injured central nervous system (CNS), yet only autoimmune T cells specific to a CNS antigen, myelin basic protein (MBP), protect neurons from secondary degeneration after crush injury of the rat optic nerve. Here we examined the involvement of NTs in T-cell-mediated neuroprotection, and the possible significance of the antigen specificity of the T cells in this activity. Analysis of cytokine and NT expression in various rat T cell lines showed that the T cells express mRNA for cytokines of Th1, Th2, and Th3 phenotypes. In addition, the T cells express mRNA and protein specific to nerve growth factor, brain-derived neurotrophic factor, NT-3, and NT-4/5. Antigen activation significantly increased NT secretion. Thus, reactivation of CNS autoimmune T cells by locally presented antigens to which they are specific can lead to enhanced secretion of NTs and possibly also of other factors in injured optic nerves. mRNA for TrkA, TrkB and p75 receptors was expressed in the injured nerve, suggesting that these specific receptors can mediate the effects of the T-cell-derived NTs. The neuroprotective effect of the passively transferred autoimmune anti-MBP T cells in injured optic nerves was significantly decreased after local applicaiton of a tyrosine kinase inhibitor known to be associated with NT-receptor activity. These results suggest that the neuroprotective effect of autoimmune T cells involves the secretion of factors such as NTs by the T cells reactivated by their specific antigen in the injured CNS. T cell intervention in the injured CNS might prove to be a useful means of promoting post-injury CNS maintenance and recovery, possibly via supply of NTs and other factors.

Pub.: 21 Oct '00, Pinned: 06 Feb '18

Neuroprotective autoimmunity: naturally occurring CD4+CD25+ regulatory T cells suppress the ability to withstand injury to the central nervous system.

Abstract: The ability of rats or mice to withstand the consequences of injury to myelinated axons in the CNS was previously shown to depend on the ability to manifest a T cell-mediated protective immune response, which is amenable to boosting by myelin-specific T cells. Here we show that this ability, assessed by retinal ganglion cell survival after optic nerve injury or locomotor activity after spinal cord contusion, is decreased if the animals were immunized as neonates with myelin proteins (resulting in their nonresponsiveness as adults to myelin proteins) or injected with naturally occurring regulatory CD4(+)CD25(+) T cells immediately after the injury, and is improved by elimination of these regulatory T cells. In nude BALBc mice replenished with a splenocyte population lacking CD4(+)CD25(+) regulatory T cells, significantly more neurons survived after optic nerve injury than in nude mice replenished with a complete splenocyte population or in matched wild-type controls. In contrast, neuronal survival in wild-type BALBc mice injected with CD4(+)CD25(+) regulatory T cells immediately after injury was significantly worse than in noninjected controls. These findings suggest that the ability to cope with the sequelae of a CNS insult is affected unfavorably by nonresponsiveness to myelin self-antigens and favorably by conditions allowing rapid expression of an autoimmune response. The regulatory T cells might represent an evolutionary compromise between the need to avoid autoimmune diseases and the need for autoimmunity on alert for the purpose of tissue maintenance.

Pub.: 14 Nov '02, Pinned: 06 Feb '18

Blocking of α4 integrin does not protect from acute ischemic stroke in mice.

Abstract: T lymphocytes have recently been identified as key mediators of tissue damage in ischemic stroke. The interaction between very late antigen-4 (VLA-4) and vascular adhesion molecule-1 is crucial for the transvascular egress of T lymphocytes, and inhibition of this interaction by specific antibodies is a powerful strategy to combat autoimmune neuroinflammation. However, whether pharmacological blocking of T-lymphocyte trafficking is also protective during brain ischemia is still unclear. We investigated the efficacy of a monoclonal antibody directed against VLA-4 in mouse models of ischemic stroke.Transient and permanent middle cerebral artery occlusion was induced in male C57Bl/6 mice. Animals treated with a monoclonal anti-CD49d antibody (300 μg) 24 hours before or 3 hours after the onset of cerebral ischemia and stroke outcome, including infarct size, functional status, and mortality, were assessed between day 1 and day 7. The numbers of immune cells invading the ischemic brain were determined by immunocytochemistry and flow cytometry.Blocking of VLA-4 significantly reduced the invasion of T lymphocytes and neutrophils on day 5 after middle cerebral artery occlusion and inhibited the upregulation of vascular adhesion molecule-1. However, the anti-CD49d antibody failed to influence stroke outcome positively irrespective of the model or the time point investigated.Pharmacological inhibition of the VLA-4/vascular adhesion molecule-1 axis in experimental stroke was ineffective in our hands. Our results cast doubt on the effectiveness of anti-CD49d as a stroke treatment. Further translational studies should be performed before testing anti-VLA-4 antibodies in patients with stroke.

Pub.: 20 Apr '14, Pinned: 06 Feb '18

Immune cell trafficking across the barriers of the central nervous system in multiple sclerosis and stroke.

Abstract: Each year about 650,000 Europeans die from stroke and a similar number lives with the sequelae of multiple sclerosis (MS). Stroke and MS differ in their etiology. Although cause and likewise clinical presentation set the two diseases apart, they share common downstream mechanisms that lead to damage and recovery. Demyelination and axonal injury are characteristics of MS but are also observed in stroke. Conversely, hallmarks of stroke, such as vascular impairment and neurodegeneration, are found in MS. However, the most conspicuous common feature is the marked neuroinflammatory response, marked by glia cell activation and immune cell influx. In MS and stroke the blood-brain barrier is disrupted allowing bone marrow-derived macrophages to invade the brain in support of the resident microglia. In addition, there is a massive invasion of auto-reactive T-cells into the brain of patients with MS. Though less pronounced a similar phenomenon is also found in ischemic lesions. Not surprisingly, the two diseases also resemble each other at the level of gene expression and the biosynthesis of other proinflammatory mediators. While MS has traditionally been considered to be an autoimmune neuroinflammatory disorder, the role of inflammation for cerebral ischemia has only been recognized later. In the case of MS the long track record as neuroinflammatory disease has paid off with respect to treatment options. There are now about a dozen of approved drugs for the treatment of MS that specifically target neuroinflammation by modulating the immune system. Interestingly, experimental work demonstrated that drugs that are in routine use to mitigate neuroinflammation in MS may also work in stroke models. Examples include Fingolimod, glatiramer acetate, and antibodies blocking the leukocyte integrin VLA-4. Moreover, therapeutic strategies that were discovered in experimental autoimmune encephalomyelitis (EAE), the animal model of MS, turned out to be also effective in experimental stroke models. This suggests that previous achievements in MS research may be relevant for stroke. Interestingly, the converse is equally true. Concepts on the neurovascular unit that were developed in a stroke context turned out to be applicable to neuroinflammatory research in MS. Examples include work on the important role of the vascular basement membrane and the BBB for the invasion of immune cells into the brain. Furthermore, tissue plasminogen activator (tPA), the only established drug treatment in acute stroke, modulates the pathogenesis of MS. Endogenous tPA is released from endothelium and astroglia and acts on the BBB, microglia and other neuroinflammatory cells. Thus, the vascular perspective of stroke research provides important input into the mechanisms on how endothelial cells and the BBB regulate inflammation in MS, particularly the invasion of immune cells into the CNS. In the current review we will first discuss pathogenesis of both diseases and current treatment regimens and will provide a detailed overview on pathways of immune cell migration across the barriers of the CNS and the role of activated astrocytes in this process. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.

Pub.: 04 Nov '15, Pinned: 06 Feb '18

Regulatory T Cells in Post-stroke Immune Homeostasis.

Abstract: The secondary neuroinflammatory response has come into focus of experimental stroke research. Immunological mechanisms after acute stroke are being investigated in the hope to identify novel and druggable pathways that contribute to secondary infarct growth after stroke. Among a variety of neuroimmunological events after acute brain ischemia, including microglial activation, brain leukocyte invasion, and secretion of pro-inflammatory factors, lymphocytes have been identified as the key leukocyte subpopulation driving the neuroinflammatory response and contributing to stroke outcome. Several studies have shown that pro-inflammatory lymphocyte subpopulations worsen stroke outcome and that inhibiting their invasion to the injured brain is neuroprotective. In contrast to the effector functions of pro-inflammatory lymphocytes, regulatory T cells (Treg) are critically involved in maintaining immune homeostasis and have been characterized as disease-limiting protective cells in several inflammatory conditions, particularly in primary inflammatory diseases of the central nervous system (CNS). However, due to the complex function of regulatory cells in immune homeostasis and disease, divergent findings have been described for the role of Treg in stroke models. Emerging evidence suggests that this discrepancy arises from potentially differing functions of Treg depending on the predominant site of action within the neurovascular unit and the surrounding inflammatory milieu. This article will provide a comprehensive review of current findings on Treg in brain ischemia models and discuss potential reasons for the observed discrepancies.

Pub.: 01 Apr '16, Pinned: 06 Feb '18

Neuroprotection for ischaemic stroke: translation from the bench to the bedside.

Abstract: Neuroprotection seeks to restrict injury to the brain parenchyma following an ischaemic insult by preventing salvageable neurons from dying. The concept of neuroprotection has shown promise in experimental studies, but has failed to translate into clinical success. Many reasons exist for this including the heterogeneity of human stroke and the lack of methodological agreement between preclinical and clinical studies. Even with the proposed Stroke Therapy Academic Industry Roundtable criteria for preclinical development of neuroprotective agents for stroke, we have still seen limited success in the clinic, an example being NXY-059, which fulfilled nearly all the Stroke Therapy Academic Industry Roundtable criteria. There are currently a number of ongoing trials for neuroprotective strategies including hypothermia and albumin, but the outcome of these approaches remains to be seen. Combination therapies with thrombolysis also need to be fully investigated, as restoration of oxygen and glucose will always be the best therapy to protect against cell death from stroke. There are also a number of promising neuroprotectants in preclinical development including haematopoietic growth factors, and inhibitors of the nicotinamide adenine dinucleotide phosphate oxidases, a source of free radical production which is a key step in the pathophysiology of acute ischaemic stroke. For these neuroprotectants to succeed, essential quality standards need to be adhered to; however, these must remain realistic as the evidence that standardization of procedures improves translational success remains absent for stroke.

Pub.: 08 Mar '12, Pinned: 06 Feb '18

B cells do not have a major pathophysiologic role in acute ischemic stroke in mice.

Abstract: Lymphocytes have been shown to play an important role in the pathophysiology of acute ischemic stroke, but the properties of B cells remain controversial. The aim of this study was to unravel the role of B cells during acute cerebral ischemia using pharmacologic B cell depletion, B cell transgenic mice, and adoptive B cell transfer experiments.Transient middle cerebral artery occlusion (60 min) was induced in wild-type mice treated with an anti-CD20 antibody 24 h before stroke onset, JHD (-/-) mice and Rag1 (-/-) mice 24 h after adoptive B cell transfer. Stroke outcome was assessed at days 1 and 3. Infarct volumes were calculated from 2,3,5-triphenyltetrazolium chloride (TTC)-stained brain sections, and neurological scores were evaluated. The local inflammatory response was determined by real-time PCR and immunohistochemistry. Apoptosis was analyzed by TUNEL staining, and astrocyte activation was revealed using immunohistochemistry and Western blot.Pharmacologic depletion of B cells did not influence infarct volumes and functional outcome at day 1 after stroke. Additionally, lack of circulating B cells in JHD (-/-) mice also failed to influence stroke outcome at days 1 and 3. Furthermore, reconstitution of Rag1 (-/-) mice with B cells had no influence on infarct volumes.Targeting B cells in experimental stroke did not influence lesion volume and functional outcome during the acute phase. Our findings argue against a major pathophysiologic role of B cells during acute ischemic stroke.

Pub.: 04 Jun '17, Pinned: 06 Feb '18

ICAM-1null C57BL/6 Mice Are Not Protected from Experimental Ischemic Stroke

Abstract: Accumulation of neutrophils in the brain is a hallmark of cerebral ischemia and considered central in exacerbating tissue injury. Intercellular adhesion molecule (ICAM)-1 is upregulated on brain endothelial cells after ischemic stroke and considered pivotal in neutrophil recruitment as ICAM-1-deficient mouse lines were found protected from experimental stroke. Translation of therapeutic inhibition of ICAM-1 into the clinic however failed. This prompted us to investigate stroke pathogenesis in Icam1tm1Alb C57BL/6 mutants, a true ICAM-1null mouse line. Performing transient middle cerebral artery occlusion, we found that absence of ICAM-1 did not ameliorate stroke pathology at acute time points after reperfusion. Near-infrared imaging showed comparable accumulation of neutrophils in the ischemic hemispheres of ICAM-1null and wild type C57BL/6 mice. We also isolated equal numbers of neutrophils from the ischemic brains of ICAM-1null and wild type C57BL/6 mice. Immunostaining of the brains showed neutrophils to equally accumulate in the leptomeninges and brain parenchymal vessels of ICAM-1null and wild type C57BL/6 mice. In addition, the lesion size was comparable in ICAM-1null and wild type mice. Our study demonstrates that absence of ICAM-1 neither inhibits cerebral ischemia-induced accumulation of neutrophils in the brain nor provides protection from ischemic stroke.

Pub.: 04 Feb '18, Pinned: 06 Feb '18