Quantcast


CURATOR

PhD student, University of Manitoba

PINBOARD SUMMARY

effect of red fox settlement in the tundra on the spatio-temporal habits of Arctic foxes

Rapid changes occur in the northern ecosystems in response to global warming and anthropogenic pressure. Boreal species increase and expand their range, while tundra species decrease and retreat north. Tundra dwellers such as the Arctic fox will likely be negatively impacted by the invasion of the tundra by boreal species such as the red fox. Red foxes were typically found in temperate and taiga biomes, but have dramatically expanded their range northward during the 20th century and are now commonly observed to encroach on the tundra in Eurasia and North America. Arctic foxes have a circumpolar distribution and inhabit tundra ecosystems. The simultaneous presence of those closely related species likely induces competition. Red foxes are larger than Arctic foxes, suggesting they would physically outcompete Arctic foxes. In northern Manitoba, red foxes recently increased their use of available tundra dens. We know little about the habitat use by those red foxes, or their interaction with sympatric Arctic foxes. Spatial behavior is the result of resource (such as prey or dens) distribution and abundance, and intraspecific and interspecific interactions. A “home range” is a cognitive map an animal constantly updates to stay abreast of the resources status of the parts of his environment he is disposed to go to meet his needs. The presence of a competitor likely decrease the pool of available resources, thus increasing the size of home ranges. The possibility of interspecific encounter may induce a temporal segregation between red and Arctic foxes in areas where their resource exploitation overlaps. The objective of this study is to examine how red and Arctic foxes interact in western Hudson Bay. Telemetry is a powerful tool to determine the level of possible competition between species. Adult foxes of both species are equipped with GPS collars to assess seasonality, habitat use, and circadian activity. This information will help determine how the two species partition time and space use to lessen competition. The simplicity of Arctic biotic environment makes it vulnerable to slight perturbations. Arctic foxes are linked to many other Arctic species through both terrestrial and marine food webs. The IUCN recently chose the Arctic fox as a flagship species to illustrate the disruptive effects of species interactions induced by climate change. The possible competition with red foxes might act in synergy with decline of their prey and habitat loss.

11 ITEMS PINNED

Top predators, mesopredators and their prey: interference ecosystems along bioclimatic productivity gradients.

Abstract: 1. The Mesopredator Release Hypothesis (MRH) suggests that top predator suppression of mesopredators is a key ecosystem function with cascading impacts on herbivore prey, but it remains to be shown that this top-down cascade impacts the large-scale structure of ecosystems. 2. The Exploitation Ecosystems Hypothesis (EEH) predicts that regional ecosystem structures are determined by top-down exploitation and bottom-up productivity. In contrast to MRH, EEH assumes that interference among predators has a negligible impact on the structure of ecosystems with three trophic levels. 3. We use the recolonization of a top predator in a three-level boreal ecosystem as a natural experiment to test if large-scale biomass distributions and population trends support MRH. Inspired by EEH, we also test if top-down interference and bottom-up productivity impact regional ecosystem structures. 4. We use data from the Finnish Wildlife Triangle Scheme which has monitored top predator (lynx, Lynx lynx), mesopredator (red fox, Vulpes vulpes) and prey (mountain hare, Lepus timidus) abundance for 17 years in a 200 000 km(2) study area which covers a distinct productivity gradient. 5. Fox biomass was lower than expected from productivity where lynx biomass was high, whilst hare biomass was lower than expected from productivity where fox biomass was high. Hence, where interference controlled fox abundance, lynx had an indirect positive impact on hare abundance as predicted by MRH. The rates of change indicated that lynx expansion gradually suppressed fox biomass. 6. Lynx status caused shifts between ecosystem structures. In the 'interference ecosystem', lynx and hare biomass increased with productivity whilst fox biomass did not. In the 'mesopredator release ecosystem', fox biomass increased with productivity but hare biomass did not. Thus, biomass controlled top-down did not respond to changes in productivity. This fulfils a critical prediction of EEH. 7. We conclude that the cascade involving top predators, mesopredators and their prey can determine large-scale biomass distribution patterns and regional ecosystem structures. Hence, interference within trophic levels has to be taken into account to understand how terrestrial ecosystem structures are shaped.

Pub.: 27 Mar '10, Pinned: 10 Oct '17

Life history traits in a cyclic ecosystem: a field experiment on the arctic fox.

Abstract: The reproduction of many species depends strongly on variation in food availability. The main prey of the arctic fox in Fennoscandia are cyclic small rodents, and its number of litters and litter size vary depending on the phase of the rodent cycle. In this experiment, we studied if the arctic fox adjusts its reproduction as a direct response to food abundance, in accordance with the food limitation hypothesis, or if there are additional phase-dependent trade-offs that influence its reproduction. We analysed the weaning success, i.e. proportion of arctic fox pairs established during mating that wean a litter in summer, of 422 pairs of which 361 were supplementary winter fed, as well as the weaned litter size of 203 litters of which 115 were supplementary winter fed. Females without supplementary winter food over-produced cubs in relation to food abundance in the small rodent increase phase, i.e. the litter size was equal to that in the peak phase when food was more abundant. The litter size for unfed females was 6.38 in the increase phase, 7.11 in the peak phase and 3.84 in the decrease phase. The litter size for supplementary winter-fed litters was 7.95 in the increase phase, 10.61 in the peak phase and 7.86 in the decrease phase. Thus, feeding had a positive effect on litter size, but it did not diminish the strong impact of the small rodent phase, supporting phase-dependent trade-offs in addition to food determining arctic fox reproduction.

Pub.: 21 Mar '13, Pinned: 10 Oct '17

Benefiting from a migratory prey: spatio-temporal patterns in allochthonous subsidization of an Arctic predator.

Abstract: 1. Flows of nutrients and energy across ecosystem boundaries have the potential to subsidize consumer populations and modify the dynamics of food webs, but how spatio-temporal variations in autochthonous and allochthonous resources affect consumers' subsidization remains largely unexplored. 2. We studied spatio-temporal patterns in the allochthonous subsidization of a predator living in a relatively simple ecosystem. We worked on Bylot Island (Nunavut, Canada), where arctic foxes (Vulpes lagopus L.) feed preferentially on lemmings (Lemmus trimucronatus and Dicrostonyx groenlandicus Traill), and alternatively on colonial greater snow geese (Anser caerulescens atlanticus L.). Geese migrate annually from their wintering grounds (where they feed on farmlands and marshes) to the Canadian Arctic, thus generating a strong flow of nutrients and energy across ecosystem boundaries. 3. We examined the influence of spatial variations in availability of geese on the diet of fox cubs (2003-2005) and on fox reproductive output (1996-2005) during different phases of the lemming cycle. 4. Using stable isotope analysis and a simple statistical routine developed to analyse the outputs of a multisource mixing model (SIAR), we showed that the contribution of geese to the diet of arctic fox cubs decreased with distance from the goose colony. 5. The probability that a den was used for reproduction by foxes decreased with distance from the subsidized goose colony and increased with lemming abundance. When lemmings were highly abundant, the effect of distance from the colony disappeared. The goose colony thus generated a spatial patterning of reproduction probability of foxes, while the lemming cycle generated a strong temporal variation of reproduction probability of foxes. 6. This study shows how the input of energy owing to the large-scale migration of prey affects the functional and reproductive responses of an opportunistic consumer, and how this input is spatially and temporally modulated through the foraging behaviour of the consumer. Thus, perspectives of both landscape and foraging ecology are needed to fully resolve the effects of subsidies on animal demographic processes and population dynamics.

Pub.: 25 Jan '12, Pinned: 10 Oct '17

The marine side of a terrestrial carnivore: intra-population variation in use of allochthonous resources by arctic foxes.

Abstract: Inter-individual variation in diet within generalist animal populations is thought to be a widespread phenomenon but its potential causes are poorly known. Inter-individual variation can be amplified by the availability and use of allochthonous resources, i.e., resources coming from spatially distinct ecosystems. Using a wild population of arctic fox as a study model, we tested hypotheses that could explain variation in both population and individual isotopic niches, used here as proxy for the trophic niche. The arctic fox is an opportunistic forager, dwelling in terrestrial and marine environments characterized by strong spatial (arctic-nesting birds) and temporal (cyclic lemmings) fluctuations in resource abundance. First, we tested the hypothesis that generalist foraging habits, in association with temporal variation in prey accessibility, should induce temporal changes in isotopic niche width and diet. Second, we investigated whether within-population variation in the isotopic niche could be explained by individual characteristics (sex and breeding status) and environmental factors (spatiotemporal variation in prey availability). We addressed these questions using isotopic analysis and bayesian mixing models in conjunction with linear mixed-effects models. We found that: i) arctic fox populations can simultaneously undergo short-term (i.e., within a few months) reduction in both isotopic niche width and inter-individual variability in isotopic ratios, ii) individual isotopic ratios were higher and more representative of a marine-based diet for non-breeding than breeding foxes early in spring, and iii) lemming population cycles did not appear to directly influence the diet of individual foxes after taking their breeding status into account. However, lemming abundance was correlated to proportion of breeding foxes, and could thus indirectly affect the diet at the population scale.

Pub.: 18 Aug '12, Pinned: 10 Oct '17

Movement tactics of a mobile predator in a meta-ecosystem with fluctuating resources: the arctic fox in the High Arctic

Abstract: Animal movement is a fundamental process shaping ecosystems at multiple levels, from the fate of individuals to global patterns of biodiversity. The spatio-temporal dynamic of food resources is a major driver of animal movement and generates patterns ranging from range residency to migration and nomadism. Arctic tundra predators face a strongly fluctuating environment marked by cyclic microtine populations, high seasonality, and the potential availability of sea ice, which gives access to marine resources in winter. This type of relatively poor and highly variable environment can promote long-distance movements and resource tracking in mobile species. Here, we investigated the winter movements of the arctic fox, a major tundra predator often described as a seasonal migrant or nomad. We used six years of Argos satellite telemetry data collected on 66 adults from Bylot Island (Nunavut, Canada) tracked during the sea ice period. We hypothesized that long-distance movements would be influenced by spatio-temporal changes in resource availability and individual characteristics. Despite strong annual and seasonal changes in resource abundance and distribution, we found that a majority of individuals remained resident, especially those located in an area characterized by highly predictable pulse resources (goose nesting colony) and abundant cached food items (eggs). Foxes compensated terrestrial food shortage by commuting to the sea ice rather than using long-distance tracking or moving completely onto the sea ice for winter. Individual characteristics also influenced movement patterns: age positively influenced the propensity to engage in nomadism, suggesting older foxes may be driven out of their territories. Our results show how these mammalian predators can adjust their movement patterns to favor range residency despite strong spatio-temporal fluctuations in food resources. Understanding the movement responses of predators to prey dynamics helps identifying the scales at which they work, which is a critical aspect of the functioning and connectivity among meta-ecosystems.

Pub.: 07 Dec '16, Pinned: 10 Oct '17

Exclusion by interference competition? The relationship between red and arctic foxes

Abstract: The distribution of many predators may be limited by interactions with larger predator species. The arctic fox in mainland Europe is endangered, while the red fox is increasing its range in the north. It has been suggested that the southern distribution limit of the arctic fox is determined by interspecific competition with the red fox. This has been criticised, on the basis that the species co-exist on a regional scale. However, if the larger red fox is superior and interspecific competition important, the arctic fox should avoid close contact, especially during the breeding season. Consequently, the distribution of breeding dens for the two species would be segregated on a much smaller spatial and temporal scale, in areas where they are sympatric. We tested this hypothesis by analysing den use of reproducing arctic and red foxes over 9 years in Sweden. High quality dens were inhabited by reproducing arctic foxes more often when no red foxes bred in the vicinity. Furthermore, in two out of three cases when arctic foxes did reproduce near red foxes, juveniles were killed by red foxes. We also found that breeding arctic foxes occupied dens at higher altitudes than red foxes did. In a large-scale field experiment, red foxes were removed, but the results were not conclusive. However, we conclude that on the scale of individual territories, arctic foxes avoid areas with red foxes. Through interspecific interference competition, the red fox might thus be excluding the arctic fox from breeding in low altitude habitat, which is most important in years when food abundance is limited and competition is most fierce. With high altitude refuges being less suitable, even small-scale behavioural effects could scale up to significant effects at the population level.

Pub.: 01 Jul '02, Pinned: 20 Aug '17

Natal den selection by sympatric arctic and red foxes on Herschel Island, Yukon, Canada

Abstract: In the twentieth century, red fox (Vulpes vulpes) expanded into the Canadian Arctic, where it competes with arctic fox (Vulpes lagopus) for food and shelter. Red fox dominates in physical interactions with the smaller arctic fox, but little is known about competition between them on the tundra. On Hershel Island, north Yukon, where these foxes are sympatric, we focused on natal den choice, a critical aspect of habitat selection. We tested the hypothesis that red fox displaces arctic fox from dens in prey-rich habitats. We applied an approach based on model comparisons to analyse a 10-year data set and identify factors important to den selection. Red fox selected dens in habitats that were more prey-rich in spring. When red foxes reproduced, arctic fox selected dens with good springtime access, notably many burrows unblocked by ice and snow. These provided the best refuge early in the reproductive season. In the absence of red foxes, arctic foxes selected dens offering good shelter (i.e. large isolated dens). Proximity to prey-rich habitats was consistently less important than the physical aspects of dens for arctic fox. Our study shows for the first time that red foxes in the tundra select dens associated primarily with prey-rich areas, while sympatric arctic foxes do not. These results fit a model of red fox competitively interfering with arctic fox, the first detailed study of such competition in a true arctic setting.

Pub.: 04 Dec '13, Pinned: 20 Aug '17