Quantcast

How to Build an Energy Venture | Deep Science Ventures

Follow this board to stay on top of trending and game-changing research papers for cleantech

Expert curation of this pinboard is made possible by Deep Science Ventures, a partner of Sparrho.

The Deep Science Ventures Community

It's about creating the connections that allow you to turn your vision into reality in the fastest way possible.

Deep Science Ventures is focused on bridging the gaps between industry and academia, different disciplines, and founders and investors, by creating collisions in the least awkward and most effective way possible.

If you are excited about the application of science and want to meet like-minded people in your sector or technology area, you are welcome to join our small dinners, larger events and casual drinks. Leave your email on our website and we'll keep you up to date (around one email / month).

Click here to learn more

Explore this collection, click a card

Research Paper

Skeletal Methane–Air Reaction Mechanism for Large Eddy Simulation of Turbulent Microwave-Assisted Combustion

Abstract: Irradiating a flame via microwave radiation is a plasma-assisted combustion (PAC) technology that can be used to modify the combustion chemical kinetics in order to improve flame stability and to delay lean blow-out. One practical implication is that combustion engines may be able to operate with leaner fuel mixtures and have an improved fuel flexibility capability including biofuels. Furthermore, this technology may assist in reducing thermoacoustic instabilities, which is a phenomenon that may severely damage the engine and increase NOX production. To further understand microwave-assisted combustion, a skeletal kinetic reaction mechanism for methane–air combustion is developed and presented. The mechanism is detailed enough to take into account relevant features, but sufficiently small to be implemented in large eddy simulations (LES) of turbulent combustion. The mechanism consists of a proposed skeletal methane–air reaction mechanism accompanied by subsets for ozone, singlet oxygen, chemionization, and electron impact reactions. The baseline skeletal methane–air mechanism contains 17 species and 42 reactions, and it predicts the ignition delay time, flame temperature, flame speed, major species, and most minor species well, in addition to the extinction strain, compared to the detailed GRI 3.0 reaction mechanism. The amended skeletal reaction mechanism consists of 27 species and 80 reactions and is developed for a reduced electric field E/N below the critical field strength (of ∼125 Td) for the formation of a microwave breakdown plasma. Both laminar and turbulent flame simulation studies are carried out with the proposed skeletal reaction mechanism. The turbulent flame studies consist of propagating planar flames in homogeneous isotropic turbulence in the reaction sheets and the flamelets in eddies regimes, and a turbulent low-swirl flame. A comparison with experimental data is performed for a turbulent low-swirl flame. The results suggest that we can influence both laminar and turbulent flames by nonthermal plasmas, based on microwave irradiation. The laminar flame speed increases more than the turbulent flame speed, but the radical pool created by the microwave irradiation significantly increases the lean blow-out limits of the turbulent flame, thus making it less vulnerable to thermoacoustic combustion oscillations. Apart from the experimental results from low-swirl flame presented here, experimental data for validation of the simulated trends are scarce, and conclusions build largely on simulation results. Analysis of chemical kinetics from simulations of laminar flames and LES on turbulent flames reveal that singlet oxygen molecule is of key importance for the increased reactivity, accompanied by production of radicals such as O and OH.

Pub.: 18 Jan '17, Pinned: 21 Feb '17

Research Paper

Life cycle assessment is the most relevant framework to evaluate biofuel greenhouse gas burdens

Abstract: Life cycle assessment (LCA) is used extensively to assess the greenhouse gas (GHG) implications of biofuels. Some argue that the common treatment of biogenic carbon emissions as being carbon neutral in LCA is flawed. From this divergent perspective, biofuels have potential benefits only if additional atmospheric CO2 is captured or feedstocks that would otherwise quickly decompose (e.g. agricultural residues) are utilized. An alternative method, Annual Basis Carbon (ABC) accounting, has recently been demonstrated for a single ethanol facility comparing the year-over-year GHG impacts of the cropland supplying the facility, the fuel production processes (gasoline prior to construction and ethanol after), and vehicle tailpipe emissions. Our review of the ABC method identifies inconsistencies in the treatment of the non-fuel products: corn, soybeans, and distiller's dried grain solubles (DDGS). While these products are also consumed annually, the GHG emissions were not considered in evaluating the system performance. Furthermore, GHG impacts, both in terms of burdens from inputs and crop CO2 uptake, were not allocated to the products leaving the system. Thus in the initial state, the petroleum-fueled system received a substantial benefit from crop CO2 uptake, but none of the subsequent emission burdens associated with the consumption of non-fuel (i.e., food/feed) ‘exports’. In the final state, conversely, most biomass was combusted as ethanol and captured within the considered system. A system expansion is needed to better account for impacts. While concerns about the degree of carbon additionality have some merit, consequential LCA methods provide for more consistent and comprehensive approaches for evaluating biofuel GHG performance. © 2017 Society of Chemical Industry and John Wiley & Sons, Ltd

Pub.: 07 Feb '17, Pinned: 21 Feb '17

Research Paper

Determinants of the Price-Premium for Green Energy: Evidence from an OECD Cross-Section

Abstract: Using data from a survey of households in 11 OECD countries, this paper investigates the determinants of preferences for a completely green residential electricity system. Three important questions are addressed: (i) how much are households willing to pay to use only renewable energy? (ii) does willingness-to-pay (WTP) vary significantly across household groups and countries? and (iii) what drives the decision to enter the (hypothetical) market for green energy and, given entry, what drives the level of WTP? The analysis here differs from previous studies on green energy in two ways: first, data and analyses are comparable across countries and second, a comprehensive attempt is made to understand 0 WTP, and to accommodate—using a censored quantile regression (CQR) framework—unobserved heterogeneity. The survey data indicate a low WTP, at 11–12 % of current electric bill. This study also addresses a key question: how important is income for understanding WTP, relative to more “attitudinal” determinants? The effect of income overall appears ambiguous, with Tobit-like models indicating that income is not significant while the CQR indicates that income exerts a significant effect near the center of the distribution of WTP. Across all frameworks used, a key determinant of WTP appears to be environmental attitudes, particularly membership in an environmental organization.

Pub.: 04 Jan '15, Pinned: 02 Feb '17

Research Paper

The effect of intermittent renewables on the electricity price variance

Abstract: Abstract The dominating view in the literature is that renewable electricity production increases the price variance on spot markets for electricity. In this paper, we critically review this hypothesis. Using a static market model, we identify the variance of the infeed from intermittent electricity sources (IES) and the shape of the industry supply curve as two pivotal factors influencing the electricity price variance. The model predicts that the overall effect of IES infeed depends on the produced amount: while small to moderate quantities of IES tend to decrease the price variance, large quantities have the opposite effect. In the second part of the paper, we test these predictions using data from Germany, where investments in IES have been massive in the recent years. The results of this econometric analysis largely conform to the predictions from the theoretical model. Our findings suggest that subsidy schemes for IES capacities should be complemented by policy measures supporting variance absorbing technologies such as smart-grids, energy storage, or grid interconnections to ensure the build-up of sufficient capacities in time.AbstractThe dominating view in the literature is that renewable electricity production increases the price variance on spot markets for electricity. In this paper, we critically review this hypothesis. Using a static market model, we identify the variance of the infeed from intermittent electricity sources (IES) and the shape of the industry supply curve as two pivotal factors influencing the electricity price variance. The model predicts that the overall effect of IES infeed depends on the produced amount: while small to moderate quantities of IES tend to decrease the price variance, large quantities have the opposite effect. In the second part of the paper, we test these predictions using data from Germany, where investments in IES have been massive in the recent years. The results of this econometric analysis largely conform to the predictions from the theoretical model. Our findings suggest that subsidy schemes for IES capacities should be complemented by policy measures supporting variance absorbing technologies such as smart-grids, energy storage, or grid interconnections to ensure the build-up of sufficient capacities in time.

Pub.: 01 Jul '16, Pinned: 02 Feb '17

Research Paper

Startup time, innovation and organizational emergence: A study of USA-based international technology ventures

Abstract: The acceleration of new technology venture launch and growth is an important and rapidly growing field of practice for university-based accelerators, incubators, and technology transfer offices. Based on four comparative case studies of fast-launching clean tech startups in the USA (two of which were university-affiliated), this paper explains how some technology startups are able to develop innovative products, form organizations, internationalize, and release products into global markets very rapidly, and highlights implications for university-sourced ventures. Findings show that two processes, “product emergence” and “organization emergence,” have to be managed strategically, with time as a critical variable to be considered. This paper suggests that there are dynamic tensions between temporal, financial, and human resources in the technology startup process. To start up quickly, the new international technology venture compresses two parallel timelines: product launch and organization launch, which can also accelerate the internationalization process. This study identifies the organizational formation pivot as a risky but necessary transition from a lean, informal, fast-paced technology development project to a structured, legally compliant organization, in the case of a university-sourced venture fully independent from the university that spawned it, that can be trusted for transactions and investment.

Pub.: 19 Jul '16, Pinned: 31 Jan '17

Research Paper

Biofuels and the role of space in sustainable innovation journeys.

Abstract: This paper aims to identify the lessons that should be learnt from how biofuels have been envisioned from the aftermath of the oil shocks of the 1970s to the present, and how these visions compare with biofuel production networks emerging in the 2000s. Working at the interface of sustainable innovation journey research and geographical theories on the spatial unevenness of sustainability transition projects, we show how the biofuels controversy is linked to characteristics of globalised industrial agricultural systems. The legitimacy problems of biofuels cannot be addressed by sustainability indicators or new technologies alone since they arise from the spatial ordering of biofuel production. In the 1970-80s, promoters of bioenergy anticipated current concerns about food security implications but envisioned bioenergy production to be territorially embedded at national or local scales where these issues would be managed. Where the territorial and scalar vision was breached, it was to imagine poorer countries exporting higher-value biofuel to the North rather than the raw material as in the controversial global biomass commodity chains of today. However, controversy now extends to the global impacts of national biofuel systems on food security and greenhouse gas emissions, and to their local impacts becoming more widely known. South/South and North/North trade conflicts are also emerging as are questions over biodegradable wastes and agricultural residues as global commodities. As assumptions of a food-versus-fuel conflict have come to be challenged, legitimacy questions over global agri-business and trade are spotlighted even further. In this context, visions of biofuel development that address these broader issues might be promising. These include large-scale biomass-for-fuel models in Europe that would transform global trade rules to allow small farmers in the global South to compete, and small-scale biofuel systems developed to address local energy needs in the South.

Pub.: 22 Apr '14, Pinned: 01 Feb '17

Research Paper

Socioeconomic indicators for sustainable design and commercial development of algal biofuel systems

Abstract: Social and economic indicators can be used to support design of sustainable energy systems. Indicators representing categories of social well‐being, energy security, external trade, profitability, resource conservation, and social acceptability have not yet been measured in published sustainability assessments for commercial algal biofuel facilities. We review socioeconomic indicators that have been modeled at the commercial scale or measured at the pilot or laboratory scale, as well as factors that affect them, and discuss additional indicators that should be measured during commercialization to form a more complete picture of socioeconomic sustainability of algal biofuels. Indicators estimated in the scientific literature include the profitability indicators, return on investment (ROI) and net present value (NPV), and the resource conservation indicator, fossil energy return on investment (EROI). These modeled indicators have clear sustainability targets and have been used to design sustainable algal biofuel systems. Factors affecting ROI, NPV, and EROI include infrastructure, process choices, and financial assumptions. The food security indicator, percent change in food price volatility, is probably zero where agricultural lands are not used for production of algae‐based biofuels; however, food‐related coproducts from algae could enhance food security. The energy security indicators energy security premium and fuel price volatility and external trade indicators terms of trade and trade volume cannot be projected into the future with accuracy prior to commercialization. Together with environmental sustainability indicators, the use of a suite of socioeconomic sustainability indicators should contribute to progress toward sustainability of algal biofuels.

Pub.: 10 May '16, Pinned: 01 Feb '17

Research Paper

Design of an integrated process for simultaneous chemical looping hydrogen production and electricity generation with CO2 capture

Abstract: Publication date: Available online 7 January 2017 Source:International Journal of Hydrogen Energy Author(s): Mehdi Mehrpooya, Mohammad Mehdi Moftakhari Sharifzadeh, Mahsa Rajabi, Mortaza Aghbashlo, Meisam Tabatabai, Soleiman Hosseinpour, Seeram Ramakrishna This study was aimed at proposing a novel integrated process for co-production of hydrogen and electricity through integrating biomass gasification, chemical looping combustion, and electrical power generation cycle with CO2 capture. Syngas obtained from biomass gasification was used as fuel for chemical looping combustion process. Calcium oxide metal oxide was used as oxygen carrier in the chemical looping system. The effluent stream of the chemical looping system was then transferred through a bottoming power generation cycle with carbon capture capability. The products achieved through the proposed process were highly-pure hydrogen and electricity generated by chemical looping and power generation cycle, respectively. Moreover, LNG cold energy was used as heat sink to improve the electrical power generation efficiency of the process. Sensitivity analysis was also carried out to scrutinize the effects of influential parameters, i.e., carbonator temperature, steam/biomass ratio, gasification temperature, gas turbine inlet stream temperature, and liquefied natural gas (LNG) flow rate on the plant performance. Overall, the optimum heat integration was achieved among the sub-systems of the plant while a high energy efficiency and zero CO2 emission were also accomplished. The findings of the present study could assist future investigations in analyzing the performance of integrated processes and in investigating optimal operating conditions of such systems.

Pub.: 13 Jan '17, Pinned: 01 Feb '17