I am a researcher who strives to make a change for the better

I love research and teaching. Implementation of new discoveries to practice needs educating the public and I love to travel the world to tell about my discoveries.


Petroleum fumes are known to cause harmful health effects. But how bad is it?

Fuel handlers at petrol stations are continuously exposed to organic solvents in the air and pollutants that are emitted from vehicles. The toxic exhausts get inhaled by these employees and may also get absorbed through the skin if they accidentally come into direct contact with them. The fuel vaporizes more readily in tropical climates than in temperate climates and the minimal use of any protection gear further aggravates the exposure and most likely increases the toxicity. Benzene containing solvents have been known to cause haemotoxcicity, neurotoxicity, carcinogenesis and pulmonary diseases in humans . Typically, gasoline contains more than 150 chemicals including small amounts of benzene, toluene, xylene, and sometimes lead. Diesel exhaust is a complex mixture of gases and fine particles.

Volatile organic compounds (VOCs) a component of petrol exhaust form ground level ozone and other components of photochemical smog. The potential impacts of ground-level ozone include reduced lung function, increased incidence of respiratory symptoms, respiratory hospital admissions and mortality. In addition to these ground level ozone cause damage to flora and adversely affect bio diversity. Benzene is a VOC and a component of petrol. It is also a known human carcinogen and is associated with a heightened risk of illnesses such as leukaemia.


Exposure to particles, elemental carbon and nitrogen dioxide in workers exposed to motor exhaust.

Abstract: The main aim of this study was to investigate the personal exposure to diesel and petrol exhaust fumes in occupations when exposure is prevalent and/or high. We also investigated the correlation between the five particle fractions [particles with an aerodynamic diameter <1 microm (PM(1)), particles with an aerodynamic diameter <2.5 microm (PM(2.5)), particles in size 0.1-10 microm, elemental carbon (EC) and total carbon (TC)] and nitrogen dioxide (NO(2)), in the various occupational environments.Seventy-one workers were included in the study. They were subdivided into seven groups depending on working area, working indoors, out of doors or in vehicles and type of exposure (diesel or petrol exhaust). Personal measurements were performed during 3 days per worker. We used five indicators of the particle fraction: PM(1), PM(2.5), particle measured with a real-time monitoring instrument for particles in sizes 0.1 and 10 microm (DataRAM), EC and TC. We used NO(2) as an indicator of the gas phase.Tunnel construction workers showed the highest levels of exposure for all indicators, followed by diesel-exposed garage workers. For the other five groups, the levels were statistically significantly lower, and the differences between the groups were small. The full-shift geometric average of PM(1) varied between 119 microg m(-3) (tunnel construction workers) and 11 microg m(-3) (taxi drivers). For PM(2.5), the levels varied between 231 microg m(-3) (tunnel construction workers) and 16 microg m(-3) (bus and lorry drivers). For the measurements with the real-time monitoring instrument DataRAM, the levels varied between 398 microg m(-3) (tunnel construction workers) and 14 microg m(-3) (taxi drivers). For EC, the levels varied between 87 microg m(-3) (tunnel construction workers) and 4 microg m(-3) (other outdoor workers exposed to diesel exhaust), and for TC, the levels varied between 191 microg m(-3) (tunnel construction workers) and 10 microg m(-3) (taxi drivers). Finally, for NO(2), the levels varied between 350 microg m(-3) (tunnel construction workers) and 32 microg m(-3) (other outdoor workers exposed to diesel exhaust). For the indoor workers exposed to diesel exhaust fumes only, all the indicators correlated comparatively well and statistically significantly to each other (r(2) = 0.44-0.89). For the other groups, correlations were lower and showed no consistent pattern.The tunnel construction workers had exposure levels for all indicator substances that were considerably and significantly higher than for the other groups. The NO(2) levels were higher for indoor workers exposed to diesel exhaust than for all other groups (except tunnel construction workers). All particle fractions, as well as NO(2) correlated well in occupations with indoor exposure to diesel exhaust.

Pub.: 09 Oct '07, Pinned: 18 Jul '17

Multipronged evaluation of genotoxicity in Indian petrol-pump workers.

Abstract: Petrol (gasoline) contains a number of toxicants. This study used human biomonitoring to evaluate the genotoxic effects of exposure to benzene in petrol fumes in 100 Indian petrol-pump workers (PPWs) and an equal number of controls. The study was corroborated with in silico assessments of the Comet assay results from the human biomonitoring study. An in vitro study in human lymphocytes was also conducted to understand the genotoxicity of benzene and its metabolites. In a subset of the population studied, higher blood benzene levels were detected in the PPWs (n = 39; P < 0.01) than the controls (n = 18), and 100-250 ppb benzene was also detected in air samples from the petrol pumps. PPWs had higher levels of DNA damage than the controls (P < 0.01). In addition, the micronucleus assay was performed on lymphocytes from a subset of the subjects, and the micronucleus frequency for PPWs was significantly higher (n = 39; 14.79 +/- 3.92 per thousand) than the controls (n = 18; 7.54 +/- 3.00 per thousand). Human lymphocytes were treated in vitro with benzene and several of its metabolites and assayed for DNA damage with the Comet assay. Benzene and its metabolites produced significant (P < 0.05) levels of DNA damage at and above concentrations of 10 microM. The metabolite, p-benzoquinone, produced the greatest amount of DNA damage, followed by hydroquinone > benzene > catechol > 1,2,4,-benzenetriol > muconic acid. This study demonstrates that, using sensitive techniques, it is possible to detect human health risks at an early stage when intervention is possible. possible.

Pub.: 19 Sep '08, Pinned: 18 Jul '17

Work-exposure to PM10 and aromatic volatile organic compounds, excretion of urinary biomarkers and effect on the pulmonary function and heme-metabolism: A study of petrol pump workers and traffic police personnel in Kolkata City, India.

Abstract: This study focused work-exposure to particulate matter ≤ 10 µm (PM10), volatile organic compounds (VOCs) and biological monitoring of major VOCs (BTEX) to observe the significant effects of traffic related pollutants on respiratory and hematological systems of workers engaged in two occupational settings, petrol pumps and traffic areas of Kolkata metropolitan city, India. PM10 was assessed by personal sampling and particle size distribution by 8-stage Cascade Impactor. VOCs were analysed by gas chromatography-flame ionization detector (GC-FID) and five urinary metabolites, trans trans- mercapturic acid (tt-MA), S-phenyl mercapturic acid (SPMA), hippuric acid (HA), mandelic acid (MA) and methyl hippuric acid (MHA) of VOCs, benzene, toluene, ethyl benzene and xylenes (BTEX) by reverse phase high performance liquid chromatography (HPLC). Pulmonary functions test (PFT) was measured Spirometrically. ∂-aminoleavulinic acid (ALA) and porphobilinogen (PBG) in lymphocytes were measured spectrophometrically following column chromatographic separation. High exposure to PM10, having 50% of particles, ≤ 5.0 µm in both the occupational settings. Exposure to toluene was highest in petrol pumps whereas benzene was highest (104.6 ± 99.0 μg m(-3)) for traffic police personnel. Workplace Benzene is found many fold higher than the National ambient standard. Air-benzene is correlated significantly with pre- and post-shift tt-MA (p < 0.001) and SPMA (p < 0.001) of exposed workers. Blood cell counts indicated benzene induced hematotoxicity. ALA and PBG accumulation in lymphocytes indicated alteration in heme-metabolism, especially among traffic police. Significant reduction of force exploratory volume in one second (FEV1) and forced vital capacity (FVC) of fuel fillers are observed with increased tt-MA and SPMA. Study revealed PFT impairments 11.11% (6.66% restrictive and 2.22% obstructive and combined restrictive and obstructive type, each) among petrol pumps and 8.3% obstructive type among traffic police.

Pub.: 21 Nov '15, Pinned: 18 Jul '17