Quantcast


CURATOR
A pinboard by
Caitlin Lawson

PhD Candidate, University of Technology Sydney

PINBOARD SUMMARY

The role of volatile compounds in coral reef success

Coral reefs are some of the most productive and diverse ecosystems on our planet. At the basis of these systems are reef building corals that exist in symbiosis with algae and bacteria. These relationships have allowed for the success of coral reefs in tropical oceans yet there is still much we do not understand. One such knowledge gap surrounds the production of biogenic volatile organic compounds. These volatile compounds are produced by the corals, algae and bacteria and can influence their overall health, success and survival during stress events. Currently all work in these systems has focused on the compound known as Dimethyl-sulfide however, my research is exploring and revealing the myriad of different compounds that can be found. Specifically, I am looking at the compounds that are produced and who is responsible for producing them, whether it be the corals, algae or bacteria, while also looking at their relationships. These relationships are of great importance as the bacteria can use some of these volatile compounds as a food source and as such they can determine what proportion of these potentially climatically active volatile compounds reach the atmosphere and thereby impact the climate. By investigating these dynamics using both laboratory and field studies, I hope to clarify the diversity of volatile compounds that are produced in corals and the role they can play in the overall functioning of these crucial dynamic systems.

3 ITEMS PINNED

Characterization of marine isoprene-degrading communities.

Abstract: Isoprene is a volatile and climate-altering hydrocarbon with an atmospheric concentration similar to that of methane. It is well established that marine algae produce isoprene; however, until now there was no specific information about marine isoprene sinks. Here we demonstrate isoprene consumption in samples from temperate and tropical marine and coastal environments, and furthermore show that the most rapid degradation of isoprene coincides with the highest rates of isoprene production in estuarine sediments. Isoprene-degrading enrichment cultures, analysed by denaturing gradient gel electrophoresis and 454 pyrosequencing of the 16S rRNA gene and by culturing, were generally dominated by Actinobacteria, but included other groups such as Alphaproteobacteria and Bacteroidetes, previously not known to degrade isoprene. In contrast to specialist methane-oxidizing bacteria, cultivated isoprene degraders were nutritionally versatile, and nearly all of them were able to use n-alkanes as a source of carbon and energy. We therefore tested and showed that the ubiquitous marine hydrocarbon-degrader, Alcanivorax borkumensis, could also degrade isoprene. A mixture of the isolates consumed isoprene emitted from algal cultures, confirming that isoprene can be metabolized at low, environmentally relevant concentrations, and suggesting that, in the absence of spilled petroleum hydrocarbons, algal production of isoprene could maintain viable populations of hydrocarbon-degrading microbes. This discovery of a missing marine sink for isoprene is the first step in obtaining more robust predictions of its flux, and suggests that algal-derived isoprene provides an additional source of carbon for diverse microbes in the oceans.

Pub.: 08 Oct '09, Pinned: 28 Aug '17

Dimethyl sulfide and other biogenic volatile organic compound emissions from branching coral and reef seawater: potential sources of secondary aerosol over the Great Barrier Reef

Abstract: Abstract Volatile organic compounds (VOCs) in the headspace of bubble chambers containing branches of live coral in filtered reef seawater were analysed using gas chromatography with mass spectrometry (GC-MS). When the coral released mucus it was a source of dimethyl sulfide (DMS) and isoprene; however, these VOCs were not emitted to the chamber headspace from mucus-free coral. This finding, which suggests that coral is an intermittent source of DMS and isoprene, was supported by the observation of occasional large pulses of atmospheric DMS (DMSa) over Heron Island reef on the southern Great Barrier Reef (GBR), Australia, in the austral winter. The highest DMSa pulse (320 ppt) was three orders of magnitude less than the DMS mixing ratio (460 ppb) measured in the headspace of a dynamically purged bubble chamber containing a mucus-coated branch of Acropora aspera indicating that coral reefs can be strong point sources of DMSa. Static headspace GC-MS analysis of coral fragments identified mainly DMS and seven other minor reduced sulfur compounds including dimethyl disulfide, methyl mercaptan, and carbon disulfide, while coral reef seawater was an indicated source of methylene chloride, acetone, and methyl ethyl ketone. The VOCs emitted by coral and reef seawater are capable of producing new atmospheric particles < 15 nm diameter as observed at Heron Island reef. DMS and isoprene are known to play a role in low-level cloud formation, so aerosol precursors such as these could influence regional climate through a sea surface temperature regulation mechanism hypothesized to operate over the GBR.AbstractVolatile organic compounds (VOCs) in the headspace of bubble chambers containing branches of live coral in filtered reef seawater were analysed using gas chromatography with mass spectrometry (GC-MS). When the coral released mucus it was a source of dimethyl sulfide (DMS) and isoprene; however, these VOCs were not emitted to the chamber headspace from mucus-free coral. This finding, which suggests that coral is an intermittent source of DMS and isoprene, was supported by the observation of occasional large pulses of atmospheric DMS (DMSa) over Heron Island reef on the southern Great Barrier Reef (GBR), Australia, in the austral winter. The highest DMSa pulse (320 ppt) was three orders of magnitude less than the DMS mixing ratio (460 ppb) measured in the headspace of a dynamically purged bubble chamber containing a mucus-coated branch of Acropora aspera indicating that coral reefs can be strong point sources of DMSa. Static headspace GC-MS analysis of coral fragments identified mainly DMS and seven other minor reduced sulfur compounds including dimethyl disulfide, methyl mercaptan, and carbon disulfide, while coral reef seawater was an indicated source of methylene chloride, acetone, and methyl ethyl ketone. The VOCs emitted by coral and reef seawater are capable of producing new atmospheric particles < 15 nm diameter as observed at Heron Island reef. DMS and isoprene are known to play a role in low-level cloud formation, so aerosol precursors such as these could influence regional climate through a sea surface temperature regulation mechanism hypothesized to operate over the GBR.aaAcropora asperaa

Pub.: 01 Sep '16, Pinned: 28 Aug '17

Uncovering the volatile nature of tropical coastal marine ecosystems in a changing world.

Abstract: Biogenic volatile organic compounds (BVOCs), in particular dimethyl sulphide (DMS) and isoprene, have fundamental ecological, physiological and climatic roles. Our current understanding of these roles is almost exclusively established from terrestrial or oceanic environments but signifies a potentially major, but largely unknown, role for BVOCs in tropical coastal marine ecosystems. The tropical coast is a transition zone between the land and ocean, characterized by highly productive and biodiverse coral reefs, seagrass beds and mangroves, which house primary producers that are amongst the greatest emitters of BVOCs on the planet. Here, we synthesize our existing understanding of BVOC emissions to produce a novel conceptual framework of the tropical marine coast as a continuum from DMS-dominated reef producers to isoprene-dominated mangroves. We use existing and previously unpublished data to consider how current environmental conditions shape BVOC production across the tropical coastal continuum, and in turn how BVOCs can regulate environmental stress tolerance or species interactions via infochemical networks. We use this as a framework to discuss how existing predictions of future tropical coastal BVOC emissions, and the roles they play, are effectively restricted to present day 'baseline' trends of BVOC production across species and environmental conditions; as such, there remains a critical need to focus research efforts on BVOC responses to rapidly accelerating anthropogenic impacts at local and regional scales. We highlight the complete lack of current knowledge required to understand the future ecological functioning of these important systems, and to predict whether feedback mechanisms are likely to regulate or exacerbate current climate change scenarios through environmentally and ecologically mediated changes to BVOC budgets at the ecosystem level.

Pub.: 15 Oct '14, Pinned: 28 Aug '17