A pinboard by
Oritoke Aluko

Doctoral student, University of Ibadan, Nigeria


Examining the effect of methyl jasmonate on chronic stress in experimental rodents

Stress in an integral part of life and due to the unavailability of standard anti-stress drugs, there is need for evaluation of compounds for their ability to ameliorate the deleterious effects of stress on the body.


Orcinol glucoside produces antidepressant effects by blocking the behavioural and neuronal deficits caused by chronic stress.

Abstract: This study focused on the antidepressant potential of orcinol glucoside (OG) and its possible mechanisms of action. We established a depressed rat model using 3 consecutive weeks of chronic unpredictable mild stress (CUMS). The antidepressant-like effect of OG was revealed using the sucrose preference test, the open field test, the forced swimming test (FST), and the tail suspension test (TST). The activity of the hypothalamic-pituitary-adrenal (HPA) axis was evaluated by detecting the serum corticosterone (CORT) concentrations and mRNA expression of corticotrophin-releasing hormone (CRH) in the hypothalamus. The protein expression levels of brain-derived neurotrophic factor (BDNF) and total phosphorylated-ERK1/2 were detected by western blot. The results showed that OG treatment (1.5, 3, or 6mg/kg) alleviated the depression-like behaviour of rats under CUMS, as indicated by the increased sucrose preference and the decreased immobility in both the FST and TST, although the rearing frequency in the open field test increased only in the group that received the lowest dose (1.5mg/kg OG). Rats that received OG treatment exhibited reduced serum CORT levels and CRH mRNA expression in the hypothalamus, suggesting that the hyperactivity of the HPA axis in CUMS rats was reversed by OG treatment. Moreover, OG treatment upregulated the protein levels of BDNF and phosphorylated-ERK1/2 in the hippocampus, even above control levels. Our findings suggest that OG improved depressive behaviour in CUMS rats by downregulating HPA axis hyperactivity and increasing BDNF expression and ERK1/2 phosphorylation in the hippocampus.

Pub.: 11 Jul '13, Pinned: 10 Sep '17

Antidepressant-like effect of geniposide on chronic unpredictable mild stress-induced depressive rats by regulating the hypothalamus-pituitary-adrenal axis.

Abstract: Geniposide as the major active component of Gardenia jasminoides Ellis has neuroprotective activity. This study elucidated the potential antidepressant-like effect of geniposide and its related mechanisms using a depression rat model induced by 3 consecutive weeks of chronic unpredictable mild stress (CUMS). Sucrose preference test, open field test (OFT) and forced swimming test (FST) were applied to evaluate the antidepressant effect of geniposide. Adrenocorticotropic hormone (ACTH) and corticosterone (CORT) serum levels, adrenal gland index and hypothalamic corticotrophin-releasing hormone (CRH) mRNA expression were measured to assess the activity of hypothalamus-pituitary-adrenal (HPA) axis. Hypothalamic glucocorticoid receptor α (GRα) mRNA expression and GRα protein expression in hypothalamic paraventricular nucleus (PVN) were also determined by real-time PCR and immunohistochemistry, respectively. We found that geniposide (25, 50, 100mg/kg) treatment reversed the CUMS-induced behavioral abnormalities, as suggested by increased sucrose intake, improved crossing and rearing behavior in OFT, shortened immobility and prolonged swimming time in FST. Additionally, geniposide treatment normalized the CUMS-induced hyperactivity of HPA axis, as evidenced by reduced CORT serum level, adrenal gland index and hypothalamic CRH mRNA expression, with no significant effect on ACTH serum level. Moreover, geniposide treatment upregulated the hypothalamic GRα mRNA level and GRα protein expression in PVN, suggesting geniposide could recover the impaired GRα negative feedback on CRH expression and HPA axis. These aforementioned therapeutic effects of geniposide were essentially similar to fluoxetine. Our results indicated that geniposide possessed potent antidepressant-like properties that may be mediated by its effects on the HPA axis.

Pub.: 29 Apr '15, Pinned: 10 Sep '17

Folic acid administration produces an antidepressant-like effect in mice: evidence for the involvement of the serotonergic and noradrenergic systems.

Abstract: Clinical studies have shown that folic acid plays a role in the pathophysiology of depression. However, very few studies have investigated its effect in behavioral models of depression. Hence, this study tested its effect in the forced swimming test (FST) and the tail suspension test (TST), two models predictive of antidepressant activity, in mice. Folic acid administered by oral route (p.o.) produced a reduction in the immobility time in the FST (50-100mg/kg) and in the TST (10-50mg/kg). The administration of folic acid by i.c.v. route also reduced the immobility time in the FST (10nmol/site) and in the TST (1-10nmol/site). Both folic acid administered by oral and i.c.v. route produced no psychostimulant effect, which indicates that its antidepressant-like effect is specific. Pretreatment of mice with p-chlorophenylalanine methyl ester (PCPA; 100mg/kg, i.p., an inhibitor of serotonin (5-HT) synthesis, for 4 consecutive days), ketanserin (5mg/kg, i.p., a 5-HT(2A/2C) receptor antagonist), prazosin (1mg/kg, i.p., an alpha(1)-adrenoceptor antagonist) or yohimbine (1mg/kg, i.p., an alpha(2)-adrenoceptor antagonist) prevented the anti-immobility effect of folic acid (50mg/kg, p.o.) in the FST. Moreover, the pretreatment of mice with WAY100635 (0.1mg/kg, s.c., a selective 5-HT(1A) receptor antagonist) blocked the decrease in immobility time in the FST elicited by folic acid (50mg/kg, p.o.), but produced a synergistic effect with a subeffective dose of folic acid (10mg/kg, p.o.). In addition, a subeffective dose of folic acid (10mg/kg, p.o.) produced a synergistic antidepressant-like effect with fluoxetine (10mg/kg, p.o.) in the FST. Overall, the results firstly indicate that folic acid produced an antidepressant-like effect in FST and in TST and that this effect appears to be mediated by an interaction with the serotonergic (5-HT(1A) and 5-HT(2A/2C) receptors) and noradrenergic (alpha(1)- and alpha(2)-adrenoceptors) systems.

Pub.: 15 Dec '07, Pinned: 10 Sep '17

Antidepressant-like effect of tetrahydroisoquinoline amines in the animal model of depressive disorder induced by repeated administration of a low dose of reserpine: behavioral and neurochemical studies in the rat.

Abstract: Animal models are widely used to study antidepressant-like effect in rodents. However, it should be mentioned that pharmacological models do not always take into account the complexity of the disease process. In the present paper, we demonstrated that repeated but not acute treatment with a low dose of reserpine (0.2 mg/kg i.p.) led to a pharmacological model of depression which was based on its inhibitory effect on the vesicular monoamine transporter 2, and monoamines depleting action in the brain. In fact, we observed that chronic treatment with a low dose of reserpine induced a distinct depressive-like behavior in the forced swim test (FST), and additionally, it produced a significant decrease in the level of dopamine, noradrenaline, and serotonin in the brain structures. 1,2,3,4-Tetrahydroisoquinoline (TIQ) and its close methyl derivative, 1-methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ) are exo/endogenous amines present naturally in the mammalian brain which demonstrated a significant antidepressant-like effect in the FST and the reserpine model of depression in the rat. Both compounds, TIQ and 1MeTIQ, administered chronically in a dose of 25 mg/kg (i.p.) together with reserpine completely antagonized reserpine-produced depression as assessed by the immobility time and swimming time. Biochemical data were in agreement with behavioral experiments and demonstrated that chronic treatment with a low dose of reserpine in contrast to acute administration produced a significant depression of monoamines in the brain structures and impaired their metabolism. These neurochemical effects obtained after repeated reserpine (0.2 mg/kg i.p.) in the brain structures were completely antagonized by joint TIQ or 1MeTIQ (25 mg/kg i.p.) administration with chronic reserpine. A possible molecular mechanism of action of TIQ and 1MeTIQ responsible for their antidepressant action is discussed. On the basis of the presented behavioral and biochemical studies, we suggest that both compounds may be effective for the therapy of depression in clinic as new antidepressants which, when administered peripherally easily penetrate the blood-brain barrier, and as endogenous compounds may not have adverse side effects.

Pub.: 11 Jan '14, Pinned: 10 Sep '17

1,2,3,4-Tetrahydroisoquinoline produces an antidepressant-like effect in the forced swim test and chronic mild stress model of depression in the rat: Neurochemical correlates.

Abstract: 1,2,3,4-Tetrahydroisoquinoline (TIQ) is an exo- and endogenous amine naturally present in mammalian brain which displays antidepressant-like effect in various animal models: the forced swim test (FST) and chronic mild stress (CMS) paradigm in rats. To elucidate this action we compared the effects of TIQ with imipramine, a classic antidepressant drug and one of the most clinically effective. Applied behavioral tests showed that TIQ produced an antidepressant-like effect with a potency comparable to that of imipramine. TIQ (25-50mg/kg i.p.), similarly to imipramine (10-30mg/kg i.p.), reduced the immobility time in FST and completely reversed the decrease in sucrose intake caused by CMS in the rat. In addition, in order to avoid the possible psychostimulating effect of TIQ we examined the influence of its administration on locomotor activity in rats. TIQ, like imipramine, produced a reduction in horizontal locomotor activity. This suggested that TIQ did not have psychostimulant properties and that prolonged swimming in the FST was a result of an increased motivation to escape from the stressful situation. The biochemical analyses have shown that TIQ activates monoaminergic systems as a reversible monoamine oxidase (MAO) inhibitor and free radical scavenger. Beyond the activation of noradrenaline and serotonin systems, TIQ also moderately affects the dopamine system. On the basis of the presented behavioral and biochemical studies we suggest that TIQ is a potential new antidepressant which may be effective for the depression therapy in a clinical setting.

Pub.: 25 Feb '14, Pinned: 10 Sep '17

Antidepressant-like effects of Sanyuansan in the mouse forced swim test, tail suspension test, and chronic mild stress model.

Abstract: Natural products have been widely reported as effective therapeutic alternatives for treatment of depression. Sanyuansan is a compound recipe composed of ginseng total saponins, fish oil, and valeriana. The aims of this study were to validate whether Sanyuansan has antidepressant-like effects through acute behavioral tests including the forced swimming test (FST), tail suspension test (TST), locomotor activity test, and chronic mild stress (CMS) mice model of depression. C57BL/6 mice were given oral administration of 30 mg/kg imipramine, Sanyuansan, and saline, respectively. The acute behavioral tests including the TST, FST, and locomotor activity test were done after the administration of drugs for consecutively three times (24 hours, 1 hour, and 0.5 hour prior to the tests). Furthermore, the sucrose preference and the serum corticosterone level of mice in the CMS model were examined. Sanyuansan only at 900 mg/kg markedly reduced immobility time in the TST compared with the saline-treated group of mice. Sanyuansan at doses of 225 mg/kg, 450 mg/kg, and 900 mg/kg significantly reduced immobility time of mice in the FST. Sanyuansan reversed the CMS-induced anhedonia and hyperactivation of the hypothalamus-pituitary-adrenal axis. In addition, our results showed that neither imipramine nor Sanyuansan at any dosage increased spontaneous motor activity. These results suggested that Sanyuansan induced significant antidepressant-like effects in mice in both acute and chronic animal models, which seemed unlikely to be attributed to an increase in locomotor activities of mice, and had no sedative-like effects.

Pub.: 29 Dec '15, Pinned: 10 Sep '17

Sulforaphane produces antidepressant- and anxiolytic-like effects in adult mice.

Abstract: Increasing evidence suggests that depression is accompanied by dysregulation of neuroimmune system. Sulforaphane (SFN) is a natural compound with antioxidative, anti-inflammatory and neuroprotective activities. The present study aims to investigate the effects of SFN on depressive- and anxiety-like behaviors as well as potential neuroimmune mechanisms in mice. Repeated SFN administration (10mg/kg, i.p.) significantly decreased the immobility time in the forced swimming test (FST), tail suspension test (TST), and latency time to feeding in the novelty suppressed feeding test (NSF), and increased the time in the central zone in the open field test (OPT). Using the chronic mild stress (CMS) paradigm, we confirmed that repeated SFN (10mg/kg, i.p.) administration significantly increased sucrose preference in the sucrose preference test (SPT), and immobility time in the FST and TST of mice subjected to CMS. Also, SFN treatment significantly reversed anxiety-like behaviors (assessed by the OPT and NSF) of chronically stressed mice. Finally, ELISA analysis showed that SFN administration blocked the increase in the serum levels of corticosterone (CORT), adrenocorticotropic hormone (ACTH), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in chronically stressed mice. In summary, these findings demonstrated that SFN has antidepressant- and anxiolytic-like activities in stressed mice model of depression, which likely occurs by inhibiting the hypothalamic-pituitary-adrenal (HPA) axis and inflammatory response to stress. These data support further exploration for developing SFN as a novel agent to treat depression and anxiety disorders.

Pub.: 02 Jan '16, Pinned: 10 Sep '17

Cipadesin A, a bioactive ingredient of Xylocarpus granatum, produces antidepressant-like effects in adult mice.

Abstract: Xylocarpus granatum Koenig, widely used in folk medicine in southeast countries, has been reported to exert neuropharmacological activities as well as mood regulation. The neuroprotective activities of limonoids, riches in X. granatum, are poorly understood.To investigate the potential antidepressant-like effects and the underlying mechanisms of cipadesin A, one limonoid component, extracted from X. granatum, in acute stress-induced depression mouse models.Antidepressant-like effects of cipadesin A were investigated through behavioral tests, and potential mechanism was assessed by neuroendocrine system.Antidepressant-like effects of cipadesin A (5, 15, 50mg/kg/day for 7days, intragastrically) were estimated through forced-swimming test (FST), tail suspension test (TST) and open field test (OFT). Effects of cipadesin A on hypothalamus-pituitary- adrenal (HPA) axis were evaluated by analysis of serum corticosterone (CORT) and adrenocorticotropic hormone (ACTH) using enzyme-linked immunosorbent assay (ELISA).Cipadesin A administration significantly reduced the floating time in the FST and immobility time in the TST (15-50mg/kg). Cipadesin A dose-dependently increased the time in the central zone in the OFT (5-50mg/kg), without altering the locomotor activity. Moreover, repeated cipadesin A treatment significantly inhibited the increase levels of serum CORT (5-50mg/kg), ACTH (15-50mg/kg) following the forced swimming, but not in the absence of stress.Cipadesin A has antidepressant-like activities in acute stressed mice model of depression, which likely occurs by inhibiting the HPA axis activity response to stress. These data support further exploration for developing cipadesin A as a potential agent to treat depression and anxiety disorders.

Pub.: 17 Sep '16, Pinned: 10 Sep '17

Poly (ADP-ribose) polymerase-1 inhibitor, 3-aminobenzamide pretreatment ameliorates lipopolysaccharide-induced neurobehavioral and neurochemical anomalies in mice.

Abstract: Poly (ADP-ribose) polymerase-1 (PARP-1) functions at the center of cellular stress and sways the immune system at several key points, thus modulates inflammatory diseases. The antiinflammatory properties of PARP-1 inhibitors have been demonstrated ameliorating effect in various neuroinflammatory disorders. It has been reported that there is a close relationship between the inflammatory processes and major depressive disorder. In the present study, we have elucidated the role of oxidative-nitrosative stress-PARP-1 pathway in lipopolysaccharide (LPS)-induced neurobehavioral and neurochemical alterations in mice. 3-Aminobenzamide (10 and 30mg/kg) and imipramine (10 and 30mg/kg) were administered once daily for 14days. Mice were challenged with LPS (1mg/kg, i.p.) 30min after drug administration on the 14th day. The mRNA expression level of PARP-1 (12h after LPS injection) in the hippocampus was measured through quantitative real-time PCR. All the behavioral and biochemical parameters were assessed at 24h after LPS injection. The expression level of PARP-1mRNA was found significantly up-regulated in the hippocampus at 12h after LPS administration. Results showed that the LPS-challenged mice exhibited an increase in immobility time seen in forced swimming test and tail suspension test. LPS increased the levels of proinflammatory cytokines and oxido-nitrosative stress parameters in the hippocampus. However, pretreatment with 3-aminobenzamide (30mg/kg) significantly reversed the LPS-induced alterations in behavioral parameters, proinflammatory cytokines, oxidative-nitrosative stress and PARP-1 mRNA levels. Imipramine failed to prevent the up-regulation of PARP-1 induced by LPS administration. Our results emphasized that oxidative-nitrosative stress-PARP-1 cascade can play a key role in LPS-induced neurobehavioral and neurochemical anomalies.

Pub.: 12 Apr '15, Pinned: 10 Sep '17

Edaravone abrogates LPS-induced behavioral anomalies, neuroinflammation and PARP-1.

Abstract: Poly(ADP-ribose) polymerase-1 (PARP-1) is a DNA nick-sensor enzyme that functions at the center of cellular stress response and affects the immune system at several key points, and thus modulates inflammatory diseases. Our previous study demonstrated that lipopolysaccharide (LPS)-induced depressive-like behavior in mice can be ameliorated by 3-aminobenzamide, which is a PARP-1 inhibitor. In the present study we've examined the effect of a free radical scavenger, edaravone pretreatment against LPS-induced anxiety and depressive-like behavior as well as various hippocampal biochemical parameters including PARP-1. Male Swiss albino mice were treated with edaravone (3 & 10mg/kgi.p.) once daily for 14days. On the 14th day 30min after edaravone treatment mice were challenged with LPS (1mg/kgi.p.). After 3h and 24h of LPS administration we've tested mice for anxiety and depressive-like behaviors respectively. Western blotting analysis of PARP-1 in hippocampus was carried out after 12h of LPS administration. Moreover, after 24h of LPS administration serum corticosterone, hippocampal BDNF, oxido-nitrosative stress and pro-inflammatory cytokines were estimated by ELISA. Results showed that pretreatment of edaravone (10mg/kg) ameliorates LPS-induced anxiety and depressive-like behavior. Western blotting analysis showed that LPS-induced anomalous expression of PARP-1 significantly reverses by the pretreatment of edaravone (10mg/kg). Biochemical analyses revealed that LPS significantly diminishes BDNF, increases pro-inflammatory cytokines and oxido-nitrosative stress in the hippocampus. However, pretreatment with edaravone (10mg/kg) prominently reversed all these biochemical alterations. Our study emphasized that edaravone pretreatment prevents LPS-induced anxiety and depressive-like behavior, mainly by impeding the inflammation, oxido-nitrosative stress and PARP-1 overexpression.

Pub.: 03 Nov '15, Pinned: 10 Sep '17

Sodium Phenylbutyrate and Edaravone Abrogate Chronic Restraint Stress-Induced Behavioral Deficits: Implication of Oxido-Nitrosative, Endoplasmic Reticulum Stress Cascade, and Neuroinflammation.

Abstract: Chronic stress exposure can produce deleterious effects on the hippocampus (HC) which eventually leads to cognitive impairment and depression. Endoplasmic reticulum (ER) stress has been reported as one of the major culprits in the development of stress-induced cognitive impairment and depression. We investigated the neuroprotective efficacy of sodium phenylbutyrate (SPB), an ER stress inhibitor, and edaravone, a free radical scavenger, against chronic restraint stress (CRS)-induced cognitive deficits and anxiety- and depressive-like behavior in mice. Adult male Swiss albino mice were restrained for 6 h/day for 28 days and injected (i.p.) with SPB (40 and 120 mg/kg) or edaravone (3 and 10 mg/kg) for the last seven days. After stress cessation, the anxiety- and depressive-like behavior along with spatial learning and memory were examined. Furthermore, oxido-nitrosative stress, proinflammatory cytokines, and gene expression level of ER stress-related genes were assessed in HC and prefrontal cortex (PFC). CRS-exposed mice showed anxiety- and depressive-like behavior, which was significantly improved by SPB and edaravone treatment. In addition, SPB and edaravone treatment significantly alleviated CRS-induced spatial learning and memory impairment. Furthermore, CRS-evoked oxido-nitrosative stress, neuroinflammation, and depletion of Brain-derived neurotrophic factor were significantly ameliorated by SPB and edaravone treatment. We found significant up-regulation of ER stress-related genes in both HC and PFC regions, which were suppressed by SPB and edaravone treatment in CRS mice. Our study provides evidence that SPB and edaravone exerted neuroprotective effects on CRS-induced cognitive deficits and anxiety- and depressive-like behavior, which is possibly coupled with inhibition of oxido-nitrosative stress, neuroinflammation, and ER stress cascade.

Pub.: 18 Feb '16, Pinned: 10 Sep '17

Honokiol abrogates lipopolysaccharide-induced depressive like behavior by impeding neuroinflammation and oxido-nitrosative stress in mice.

Abstract: Depression is an inflammatory, commonly occurring and lethal psychiatric disorder having high lifetime prevalence. Preclinical and clinical studies suggest that activation of immuno-inflammatory and oxido-nitrosative stress pathways play major role in the pathophysiology of depression. Honokiol (HNK) is a biphenolic neolignan possessing multiple biological activities including antioxidant, anti-inflammatory, anxiolytic, antidepressant and neuroprotective. The present study investigated the effect of HNK (2.5 and 5 mg/kg, i.p.) pretreatment (30 min prior to LPS) on lipopolysaccharide (LPS) (0.83 mg/kg, i.p.) induced depressive like behavior, neuroinflammation, and oxido-nitrosative stress in mice. HNK pretreatment at both the doses significantly attenuated LPS induced depressive-like behavior by reducing the immobility time in forced swim and tail suspension test, and by improving the anhedonic behavior observed in sucrose preference test. HNK pretreatment ameliorated LPS induced neuroinflammation by reducing IL-1β, IL-6 and TNF-α level in hippocampus (HC) and prefrontal cortex (PFC). HNK pretreatment prevented LPS evoked oxidative/nitrosative stress via improving reduced glutathione level along with reduction in the lipid peroxidation and nitrite level in HC and PFC. Pretreatment with HNK also prevented the increase in plasma corticosterone (CORT) and decrease in hippocampal BDNF level in LPS challenged mice. In conclusion, current investigation suggested that HNK pretreatment provided protection against LPS-induced depressive like behavior which may be mediated by repression of pro-inflammatory cytokines as well as oxido-nitrosative stress in HC and PFC. Our results strongly speculated that HNK could be a therapeutic approach for the treatment of depression and other pathophysiological conditions which are closely associated with neuroinflammation and oxido-nitrosative stress.

Pub.: 03 Dec '14, Pinned: 10 Sep '17

Lipopolysaccharide induced anxiety- and depressive-like behaviour in mice are prevented by chronic pre-treatment of esculetin.

Abstract: Inflammation and oxidative stress are involved in the pathophysiology of anxiety and depression. Esculetin (ESC), a coumarin derived potent antioxidant, also possessing anti-inflammatory and neuroprotective activity. This study investigated the effect of ESC in lipopolysaccharide (LPS)-induced anxiety- and depressive-like behaviour in mice. ESC (25 and 50mg/kg, p.o.) was administered daily for 14 days, and challenged with saline or LPS (0.83mg/kg; i.p.) on the 15th day. Behavioural paradigms such as elevated plus maze (EPM), open field test (OFT), forced swim test (FST) and tail suspension test (TST) were employed to assess anxiety- and depressive-like behaviour in mice post-LPS injection. Hippocampal cytokines, MDA and GSH level, and plasma corticosterone (CORT) were measured. ESC pre-treatment significantly (P<0.05) attenuated LPS-induced anxiety-like behaviour by modulating EPM and OFT parameters. Moreover, LPS-induced increase in immobility time in FST and TST were also prevented significantly (P<0.05) by ESC (50mg/kg). ESC pre-treatment ameliorated LPS-induced neuroinflammation by attenuating brain IL-1β, IL-6, TNF-α level, and oxidative stress as well as plasma CORT level. In conclusion, the results suggest that ESC prevented LPS-induced anxiety- and depressive-like behaviour which may be governed by inhibition of cytokine production, oxidative stress and plasma CORT level. The results support the potential usefulness of ESC in the treatment of psychiatric disorders associated with inflammation and oxidative stress.

Pub.: 02 Dec '15, Pinned: 10 Sep '17

Methyl jasmonate attenuated lipopolysaccharide-induced depressive-like behaviour in mice.

Abstract: Depression is a recurrent neuropsychiatric disorder that affects millions of individuals worldwide and impact negatively on the patients' social functions and quality of life. Studies have shown that i.p injection of lipopolysaccharide (LPS) induces depressive-like behavior in rodents via induction of oxidative stress and neuroinflammation. Methyl jasmonate (MJ), an isolated compound from jasmine plant has gained reputation in aromatherapy for treatment of depression, nervousness and memory deficits. This study was designed to evaluate the effects of MJ on LPS-induced depressive-like behavior in mice. Mice were given MJ (5-20 mg/kg), imipramine (10 mg/kg) or vehicle (10 mL/kg) intraperitoneally for 7 consecutive days. On day 7, treatment was carried out 30 min prior to i.p injection of LPS (830 μg/kg). Twenty four hours after LPS administration, tail suspension, forced swim and sucrose preference tests were carried out. Thereafter, serum corticosterone levels were determined using ELISA. The levels of malondialdehyde (MDA), glutathione (GSH) and tumor necrosis factor-alpha (TNF-α) were determined in brain tissue homogenates. LPS significantly increased immobility time in the tail suspension and forced swim tests when compared with vehicle (p < 0.05), which indicates depressive-like syndromes. However, the increased immobility time was significantly reduced by MJ (5-20 mg/kg) when compared with LPS-treated group. LPS administration also altered the levels of MDA, GSH, corticosterone and TNF alpha in mice, which was significantly reversed by MJ. These findings suggest that attenuation of LPS-induced depressive-like behavior by MJ may be related to suppression of oxidative stress and release of TNF alpha.

Pub.: 26 Jun '17, Pinned: 10 Sep '17