A pinboard by
Mulugeta Abebe

Associate Research Scientist, Columbia University


I study our ability to establish a gist-like memory of our environment

For the majority of us, remembering our environment’s contents and navigating in it are generally effortless activities. Spatial neglect and major depressive disease and Schizophrenia cause significant deficits in memory, a problem that could likely contribute to their profound cognitive deficits.


A bio-friendly and economical technique for chronic implantation of multiple microelectrode arrays.

Abstract: Many neurophysiological experiments on rodents and non-human primates involve the implantation of more than one multi-electrode array to record from many regions of the brain. So called 'floating' microelectrode arrays are implanted in cortical regions of interest and are coupled via a flexible cable to their connectors which are fixed to the skull by a cement cap or a titanium pedestal, such as the Cereport system, which has been approved for human use. The use of bone cement has several disadvantages including the creation of infection prone areas at the interface with the skull and surrounding skin. Alternatively, the more biocompatible Cereport has a limited carrying capacity and is far more expensive. In this paper, we describe a new implantation technique, which combines the biocompatibility of titanium, a high carrying capacity with a minimal skull footprint, and a decreased chance of infection, all in a relatively inexpensive package. This technique utilizes an in-house fabricated 'Nesting Platform' (NP), mounted on a titanium headpost to hold multiple connectors above the skin, making the headpost the only transcutaneous object. The use of delrin, a durable, lightweight and easily machinable material, allows easy customization of the NP for a wide variety of floating electrodes and their connectors. The ultimate result is a longer survival time with superior neural recordings that can potentially last longer than with traditional implantation techniques.

Pub.: 16 Feb '10, Pinned: 17 Aug '17

Short-term dynamics of causal information transfer in thalamocortical networks during natural inputs and microstimulation for somatosensory neuroprosthesis.

Abstract: Recording the activity of large populations of neurons requires new methods to analyze and use the large volumes of time series data thus created. Fast and clear methods for finding functional connectivity are an important step toward the goal of understanding neural processing. This problem presents itself readily in somatosensory neuroprosthesis (SSNP) research, which uses microstimulation (MiSt) to activate neural tissue to mimic natural stimuli, and has the capacity to potentiate, depotentiate, or even destroy functional connections. As the aim of SSNP engineering is artificially creating neural responses that resemble those observed during natural inputs, a central goal is describing the influence of MiSt on activity structure among groups of neurons, and how this structure may be altered to affect perception or behavior. In this paper, we demonstrate the concept of Granger causality, combined with maximum likelihood methods, applied to neural signals recorded before, during, and after natural and electrical stimulation. We show how these analyses can be used to evaluate the changing interactions in the thalamocortical somatosensory system in response to repeated perturbation. Using LFPs recorded from the ventral posterolateral thalamus (VPL) and somatosensory cortex (S1) in anesthetized rats, we estimated pair-wise functional interactions between functional microdomains. The preliminary results demonstrate input-dependent modulations in the direction and strength of information flow during and after application of MiSt. Cortico-cortical interactions during cortical MiSt and baseline conditions showed the largest causal influence differences, while there was no statistically significant difference between pre- and post-stimulation baseline causal activities. These functional connectivity changes agree with physiologically accepted communication patterns through the network, and their particular parameters have implications for both rehabilitation and brain-machine interface SSNP applications.

Pub.: 25 Sep '14, Pinned: 17 Aug '17

A Customizable Multimodality Imaging Compound That Relates External Landmarks to Internal Structures.

Abstract: Numerous research and clinical interventions, such as targeting drug deliveries or surgeries and finding blood clots, abscesses, or lesions, require accurate localization of various body parts. Individual differences in anatomy make it hard to use typical stereotactic procedures that rely on external landmarks and standardized atlases. For instance, it is not unusual to incorrectly place a craniotomy in brain surgery. This project was thus performed to find a new and easy method to correctly establish the relationship between external landmarks and medical scans of internal organs, such as specific regions of the brain.This paper introduces an MRI, CT, and radiographically visible compound that can be applied to any surface and therefore provide an external reference point to an internal (eye-invisible) structure.Tested on nonhuman primates and isolated brain scans, this compound showed up with the same color in different scan types, making practical work possible. Conventional, and mostly of specific utility, products such as contrast agents were differentially colored or completely failed to show up and were not flexible.This compound can be customized to have different viscosities, colors, odors, and other characteristics. It can also be mixed with hardening materials such as acrylic for industrial or engineering uses, for example. Laparoscopy wands, electroencephalogram leads, and other equipment could also be embedded with or surrounded by the compound for ease in 3-dimensional visualizations. A pending U.S. patent endorses this invention.

Pub.: 05 Sep '15, Pinned: 17 Aug '17

Tactile representation in somatosensory thalamus (VPL) and cortex (S1) of awake primate and the plasticity induced by VPL neuroprosthetic stimulation.

Abstract: To further understand how tactile information is carried in somatosensory cortex (S1) and the thalamus (VPL), and how neuronal plasticity after neuroprosthetic stimulation affects sensory encoding, we chronically implanted microelectrode arrays across hand areas in both S1 and VPL, where neuronal activities were simultaneously recorded during tactile stimulation on the finger pad of awake monkeys. Tactile information encoded in the firing rate of individual units (rate coding) or in the synchrony of unit pairs (synchrony coding) was quantitatively assessed within the information theoretic-framework. We found that tactile information encoded in VPL was higher than that encoded in S1 for both rate coding and synchrony coding; rate coding carried greater information than synchrony coding for the same recording area. With the aim for neuroprosthetic stimulation, plasticity of the circuit was tested after 30 min of VPL electrical stimulation, where stimuli were delivered either randomly or contingent on the spiking of an S1 unit. We showed that neural encoding in VPL was more stable than in S1, which depends not only on the thalamic input but also on recurrent feedback. The percent change of mutual-information after stimulation was increased with closed-loop stimulation, but decreased with random stimulation. The underlying mechanisms during closed-loop stimulation might be spike-timing-dependent plasticity, while frequency-dependent synaptic plasticity might play a role in random stimulation. Our results suggest that VPL could be a promising target region for somatosensory stimulation with closed-loop brain-machine-interface applications.

Pub.: 09 Sep '15, Pinned: 17 Aug '17