Quantcast


CURATOR
A pinboard by
this curator

PhD student & Lecturer, Universiti Teknikal Malaysia Melaka/ University of Hamburg

PINBOARD SUMMARY

Imagine going through life as a patient suffering from a psychiatric condition. Imagine feeling overwhelmed by toxic negative situations or urgent, high arousing stimuli that require your immediate response. Patients with psychiatric disorders are immensely challenged in handling highly-charged emotional-cognitive situations. I am a Cognitive Neuroscientist. I study how emotions modulate cognitive responses behaviorally and in the brain. In depth, I explore the temporal dynamics of the dorsal anterior cingulate cortex (dACC), a part of the brain mainly involved in cognitive processes and the rostral-ventral anterior cingulate cortex (rvACC), a part of the brain mainly involved in emotional processes during emotion-cognition interaction in healthy subjects and patients with psychiatric disorders. Thus far, we discovered that emotional valence modulated the rvACC activity at an earlier stage and emotional arousal modulated the dACC activity at a later stage, resulting in faster responses in healthy subjects with higher dACC activity. We used electroencephalograph (EEG) to record the temporal activation of the brain’s electrical activity during a variation of the emotional Stroop task. This experiment was repeated on patients with psychiatric disorders. We presented the experimental stimuli in blocks of emotional categories. During breaks, in between blocks, I immediately recognized that the emotional stimuli were affecting the patient group more that the control group by their overall mood, emotional reaction and through informal chats. Now, I get to contribute to science by presenting statistical evidence of the impact of emotional valence and arousal on cognition in patients with psychiatric disorders.

9 ITEMS PINNED

The Time Course of Activity within the Dorsal and Rostral-Ventral Anterior Cingulate Cortex in the Emotional Stroop Task.

Abstract: Growing evidence from neuroimaging studies suggest that emotional and cognitive processes are interrelated. Anatomical key structures in this context are the dorsal and rostral-ventral anterior cingulate cortex (dACC and rvACC). However, up to now, the time course of activations within these regions during emotion-cognition interactions has not been disentangled. In the present study, we used event-related potentials (ERP) and standardized low-resolution electromagnetic tomography (sLORETA) region of interest (ROI) source localization analyses to explore the time course of neural activations within the dACC and rvACC using a modified emotional Stroop paradigm. ERP components related to Stroop conflict (N200, N450 and late negativity) were analyzed. The time course of brain activations in the dACC and rvACC was strikingly different with more pronounced initial responses in the rvACC followed by increased dACC activity mainly at the late negativity window. Moreover, emotional valence modulated the earlier N450 stage within the rvACC region with higher neural activations in the positive compared to the negative and neutral conditions. Emotional arousal modulated the late negativity stage; firstly in the significant arousal × congruence ERP effect and then the significant higher current density in the low arousal condition within the dACC. Using sLORETA source localization, substantial differences in the activation time courses in the dACC and rvACC could be found during the emotional Stroop task. We suggest that during late negativity, within the dACC, emotional arousal modulated the processing of response conflict, reflected in the correlation between the ex-Gaussian µ and the current density in the dACC.

Pub.: 24 Sep '16, Pinned: 27 Dec '17

The influence of emotion on cognitive control: relevance for development and adolescent psychopathology.

Abstract: The last decade has witnessed an explosion of research into the neural mechanisms underlying emotion processing on the one hand, and cognitive control and executive function on the other hand. More recently, studies have begun to directly examine how concurrent emotion processing influences cognitive control performance but many questions remain currently unresolved. Interestingly, parallel to investigations in healthy adults, research in developmental cognitive neuroscience and developmental affective disorders has provided some intriguing findings that complement the adult literature. This review provides an overview of current research on cognitive control and emotion interactions. It integrates parallel lines of research in adulthood and development and will draw on several lines of evidence ranging from behavioral, neurophysiological, and neuroimaging work in healthy adults and extend these to work in pediatric development and patients with affective disorders. Particular emphasis is given to studies that provide information on the neurobiological underpinnings of emotional and cognitive control processes using functional magnetic resonance imaging. The findings are then summarized and discussed in relation to neurochemical processes and the dopamine hypothesis of prefrontal cortical function. Finally, open areas of research for future study are identified and discussed within the context of cognitive control emotion interactions.

Pub.: 26 Jan '12, Pinned: 27 Dec '17

Reduced event-related current density in the anterior cingulate cortex in schizophrenia.

Abstract: There is good evidence from neuroanatomic postmortem and functional imaging studies that dysfunction of the anterior cingulate cortex plays a prominent role in the pathophysiology of schizophrenia. So far, no electrophysiological localization study has been performed to investigate this deficit. We investigated 18 drug-free schizophrenic patients and 25 normal subjects with an auditory choice reaction task and measured event-related activity with 19 electrodes. Estimation of the current source density distribution in Talairach space was performed with low-resolution electromagnetic tomography (LORETA). In normals, we could differentiate between an early event-related potential peak of the N1 (90-100 ms) and a later N1 peak (120-130 ms). Subsequent current-density LORETA analysis in Talairach space showed increased activity in the auditory cortex area during the first N1 peak and increased activity in the anterior cingulate gyrus during the second N1 peak. No activation difference was observed in the auditory cortex between normals and patients with schizophrenia. However, schizophrenics showed significantly less anterior cingulate gyrus activation and slowed reaction times. Our results confirm previous findings of an electrical source in the anterior cingulate and an anterior cingulate dysfunction in schizophrenics. Our data also suggest that anterior cingulate function in schizophrenics is disturbed at a relatively early time point in the information-processing stream (100-140 ms poststimulus).

Pub.: 18 Apr '01, Pinned: 27 Dec '17

Précis on The Cognitive-Emotional Brain.

Abstract: In The Cognitive-Emotional Brain (Pessoa 2013), I describe the many ways that emotion and cognition interact and are integrated in the brain. The book summarizes five areas of research that support this integrative view and makes four arguments to organize each area. (1) Based on rodent and human data, I propose that the amygdala's functions go beyond emotion as traditionally conceived. Furthermore, the processing of emotion-laden information is capacity limited, thus not independent of attention and awareness. (2) Cognitive-emotional interactions in the human prefrontal cortex (PFC) assume diverse forms and are not limited to mutual suppression. Particularly, the lateral PFC is a focal point for cognitive-emotional interactions. (3) Interactions between motivation and cognition can be seen across a range of perceptual and cognitive tasks. Motivation shapes behavior in specific ways - for example, by reducing response conflict or via selective effects on working memory. Traditional accounts, by contrast, typically describe motivation as a global activation independent of particular control demands. (4) Perception and cognition are directly influenced by information with affective or motivational content in powerful ways. A dual competition model outlines a framework for such interactions at the perceptual and executive levels. A specific neural architecture is proposed that embeds emotional and motivational signals into perception and cognition through multiple channels. (5) A network perspective should supplant the strategy of understanding the brain in terms of individual regions. More broadly, in a network view of brain architecture, "emotion" and "cognition" may be used as labels of certain behaviors, but will not map cleanly into compartmentalized pieces of the brain.

Pub.: 11 Jun '14, Pinned: 27 Dec '17

Emotional response inhibition in children with attention-deficit/hyperactivity disorder: neural and behavioural data.

Abstract: Although both emotion and response inhibition are thought to be important in attention-deficit/hyperactivity disorder (ADHD), little is known about the neural mechanisms that underlie the interaction between these two processes in patients with this disorder. This study aimed at examining how emotional contexts affect inhibitory control in children with ADHD.A total of 24 ADHD children and 24 healthy comparison subjects performed a modified go/no-go task during three different emotionally laden contexts: negative, neutral and positive. To explore the timing and the underlying neural substrates of emotion-modulated response inhibition, event-related potentials were measured and further analysed both at the scalp and at the voxel level.Patients with ADHD showed greater activation of inhibition-related neural mechanisms (i.e. no-go P3 amplitudes and orbitofrontal cortex activity) to maintain a similar level of performance as healthy comparison subjects, especially during the emotionally arousing contexts (negative and positive).This study provides plausible neural mechanisms for the difficulty that ADHD children have in controlling their behaviour in highly emotional situations. Such emotional contexts might increase the need for top-down inhibitory control and put ADHD children at greater risk for impulsive behaviours and emotional dysregulation.

Pub.: 25 Feb '15, Pinned: 27 Dec '17

The neurobiology of emotion-cognition interactions: fundamental questions and strategies for future research.

Abstract: Recent years have witnessed the emergence of powerful new tools for assaying the brain and a remarkable acceleration of research focused on the interplay of emotion and cognition. This work has begun to yield new insights into fundamental questions about the nature of the mind and important clues about the origins of mental illness. In particular, this research demonstrates that stress, anxiety, and other kinds of emotion can profoundly influence key elements of cognition, including selective attention, working memory, and cognitive control. Often, this influence persists beyond the duration of transient emotional challenges, partially reflecting the slower molecular dynamics of catecholamine and hormonal neurochemistry. In turn, circuits involved in attention, executive control, and working memory contribute to the regulation of emotion. The distinction between the 'emotional' and the 'cognitive' brain is fuzzy and context-dependent. Indeed, there is compelling evidence that brain territories and psychological processes commonly associated with cognition, such as the dorsolateral prefrontal cortex and working memory, play a central role in emotion. Furthermore, putatively emotional and cognitive regions influence one another via a complex web of connections in ways that jointly contribute to adaptive and maladaptive behavior. This work demonstrates that emotion and cognition are deeply interwoven in the fabric of the brain, suggesting that widely held beliefs about the key constituents of 'the emotional brain' and 'the cognitive brain' are fundamentally flawed. We conclude by outlining several strategies for enhancing future research. Developing a deeper understanding of the emotional-cognitive brain is important, not just for understanding the mind but also for elucidating the root causes of its disorders.

Pub.: 17 Mar '15, Pinned: 27 Dec '17