A pinboard by
Shufeng Zhao

Postdoc research fellow, The University of Sydney


A groundbreaking conceptual platform for magnesium battery based on ionic liquid electrolyte gel

Although lithium ion rechargeable batteries are believed to be one of the most successful achievements of electrochemcial power sources, the sources of lithium may be limited to a few countries as poorly accessible forms. Comparing with Li-ion batteries, magnesium batteries have attracted much attention due to their advantages of combining high power with high energy density at low cost. However, one of the largest challenges is the development of a compatible electrolyte with Magnesium anode. This project will transform comtemporary approaches to storage by devising a magnesium battery based on carbon electrodes of high surface area, and nanostructured, chemically reactive and selective electrolytes, unlike the largely chemcially passive and non-selective electrolytes used today.


Designer Ionic Liquids for Reversible Electrochemical Deposition/Dissolution of Magnesium

Abstract: Chelating ionic liquids (ILs), in which polyether chains are pendent from the organic pyrrolidinium cation of the ILs (PEGylated ILs), were prepared that facilitate reversible electrochemical deposition/dissolution of Mg from a Mg(BH4)2 source. Mg electrodeposition processes in two specific PEGylated-ILs were compared against that in the widely studied N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid (BMPyrTFSI). The two chelating IL systems (one with a pendent polyether chain with three ether oxygens, MPEG3PyrTFSI, and the other with a seven-ether chain, MPEG7PyrTFSI) showed substantial improvement over BMPyrTFSI for Mg electrodeposition/dissolution. The best overall electrochemical performance was in MPEG7PyrTFSI. X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS) were used to characterize galvanostatically deposited Mg, revealing production of pure, dendrite-free Mg deposits. Reversible Mg electrodeposition was achieved with high Coulombic efficiency (CE) of 90% and high current density (ca. 2 mA/cm2 for the stripping peak). Raman spectroscopy was used to characterize Mg2+ speciation in the PEGylated ILs and BMPyrTFSI containing Mg(BH4)2 by study of Raman modes of the coordinated and free states of borohydride, TFSI–, and polyether COC groups. Quantitative analysis revealed that the polyether chains can displace both TFSI– and BH4– from the coordination sphere of Mg2+. Comparison of the different IL electrolytes suggested that these displacement reactions may play a role in enabling Mg deposition/dissolution with high CE and current density in these PEGylated IL media. These results represent the first demonstration of reversible electrochemical deposition/dissolution of Mg in an ionic liquid specifically designed with this task in mind.

Pub.: 18 Dec '15, Pinned: 31 Aug '17

Is the Imidazolium Cation a Unique Promoter for Electrocatalytic Reduction of Carbon Dioxide?

Abstract: There has been considerable recent interest in the use of the imidazolium cation as a promoter in the heterogeneous and homogeneous electrocatalysis of CO2 reduction. However, despite its widespread use for this purpose, the mechanism by which imidazolium operates is not yet fully established. The present work reveals that enhanced catalytic activity is achieved by addition of many cations other than imidazolium. Under cyclic voltammetric conditions at a Ag electrode in acetonitrile solutions (0.1 M n-Bu4NPF6), 2.0 mM concentrations of imidazolium, pyrrolidium, ammonium, phosphonium, and (trimethylamine)-(dimethylethylamine)-dihydroborate cations can all enhance the kinetics of catalytic CO2 reduction with imidazolium and pyrrolidium being the most active. Analysis of the voltammetric data suggests that imidazolium cations achieve their impact by directly acting as cocatalysts with Ag whereas the other cations affect the reaction rate by modifying the electrochemical double layer. The results also confirm that the active form of the cocatalyst is the reduced imidazolium radical which forms a complex with CO2 before being further reduced to CO or other products at Ag and not an imidazolium carboxylate formed between an imidazolium carbene and CO2. In fact, imidazolium is deactivated during CO2 reduction by the latter reaction. Addition of water inhibits this deactivation pathway allowing the imidazolium cation to remain active in a long-term for CO2 reduction. In contrast, the pyrrolidium cation, where enhanced catalysis is attributed to an electrochemical double layer effect, retains its catalytic activity for very long periods of time regardless of the presence or absence of water.

Pub.: 21 Sep '16, Pinned: 31 Aug '17