Quantcast


CURATOR
A pinboard by
Aurelien Forget

postdoc, Queensland University of Technology

PINBOARD SUMMARY

Could 3D Printable edible seaweed reduce animal testing?

Our recent advances in materials science has enable us to use to precisely organize human stem cells in a 3D printed object made of edible seaweed. This results pave the way towards the creation of synthetic human tissue in petri dish which could be used to test future cures of today diseases while reducing the need of animal testing.

6 ITEMS PINNED

A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage.

Abstract: Cartilage is a dense connective tissue with limited self-repair capabilities. Mesenchymal stem cell (MSC) laden hydrogels are commonly used for fibrocartilage and articular cartilage tissue engineering, however they typically lack the mechanical integrity for implantation into high load bearing environments. This has led to increased interested in 3D bioprinting of cell laden hydrogel bioinks reinforced with stiffer polymer fibres. The objective of this study was to compare a range of commonly used hydrogel bioinks (agarose, alginate, GelMA and BioINK™) for their printing properties and capacity to support the development of either hyaline cartilage or fibrocartilage in vitro. Each hydrogel was seeded with MSCs, cultured for 28 days in the presence of TGF-β3 and then analysed for markers indicative of differentiation towards either a fibrocartilaginous or hyaline cartilage-like phenotype. Alginate and agarose hydrogels best supported the development of hyaline-like cartilage, as evident by the development of a tissue staining predominantly for type II collagen. In contrast, GelMA and BioINK(™) (a PEGMA based hydrogel) supported the development of a more fibrocartilage-like tissue, as evident by the development of a tissue containing both type I and type II collagen. GelMA demonstrated superior printability, generating structures with greater fidelity, followed by the alginate and agarose bioinks. High levels of MSC viability were observed in all bioinks post-printing (∼80%). Finally we demonstrate that it is possible to engineer mechanically reinforced hydrogels with high cell viability by co-depositing a hydrogel bioink with polycaprolactone filaments, generating composites with bulk compressive moduli comparable to articular cartilage. This study demonstrates the importance of the choice of bioink when bioprinting different cartilaginous tissues for musculoskeletal applications.

Pub.: 08 Oct '16, Pinned: 26 Aug '17

Direct 3D bioprinting of perfusable vascular constructs using a blend bioink.

Abstract: Despite the significant technological advancement in tissue engineering, challenges still exist towards the development of complex and fully functional tissue constructs that mimic their natural counterparts. To address these challenges, bioprinting has emerged as an enabling technology to create highly organized three-dimensional (3D) vascular networks within engineered tissue constructs to promote the transport of oxygen, nutrients, and waste products, which can hardly be realized using conventional microfabrication techniques. Here, we report the development of a versatile 3D bioprinting strategy that employs biomimetic biomaterials and an advanced extrusion system to deposit perfusable vascular structures with highly ordered arrangements in a single-step process. In particular, a specially designed cell-responsive bioink consisting of gelatin methacryloyl (GelMA), sodium alginate, and 4-arm poly(ethylene glycol)-tetra-acrylate (PEGTA) was used in combination with a multilayered coaxial extrusion system to achieve direct 3D bioprinting. This blend bioink could be first ionically crosslinked by calcium ions followed by covalent photocrosslinking of GelMA and PEGTA to form stable constructs. The rheological properties of the bioink and the mechanical strengths of the resulting constructs were tuned by the introduction of PEGTA, which facilitated the precise deposition of complex multilayered 3D perfusable hollow tubes. This blend bioink also displayed favorable biological characteristics that supported the spreading and proliferation of encapsulated endothelial and stem cells in the bioprinted constructs, leading to the formation of biologically relevant, highly organized, perfusable vessels. These characteristics make this novel 3D bioprinting technique superior to conventional microfabrication or sacrificial templating approaches for fabrication of the perfusable vasculature. We envision that our advanced bioprinting technology and bioink formulation may also have significant potentials in engineering large-scale vascularized tissue constructs towards applications in organ transplantation and repair.

Pub.: 24 Aug '16, Pinned: 26 Aug '17