Quantcast


CURATOR
A pinboard by
this curator

Post Doc, University Malaya

PINBOARD SUMMARY

To assess the presence of influenza virus in birds and possible spread to domestic fowls.

The recent emergence of zoonotic avian influenza H5N1 in the east-coast of Malaysia which resulted in the culling of the whole flock in the poultry far has highlighted the need to understand the genetic and phenotypic diversity of avian influenza viruses including those of wild bird reservoirs, beyond the traditional focus on highly pathogenic avian influenza (HPAI) strains. Influenza A virus is a major pathogen from a public, veterinary, and wildlife health perspective, yet there are no comprehensive reviews of AIV subtype diversity in birds and the evolutionary drivers of virus diversity are not well understood. Diversity exists within each of the eight genetic segments of the influenza A genome and between the different combinations of those segments that arise from re-assortment events. This surveillance study will create an inventory of subtype diversity as a first step towards understanding what drives virus richness and prepare us for emergence events and increase our preparedness for future outbreaks.

6 ITEMS PINNED

Influenza viruses production: Evaluation of a novel avian cell line DuckCelt®-T17.

Abstract: The influenza vaccine manufacturing industry is looking for production cell lines that are easily scalable, highly permissive to multiple viruses, and more effective in term of viral productivity. One critical characteristic of such cell lines is their ability to grow in suspension, in serum free conditions and at high cell densities. Influenza virus causing severe epidemics both in human and animals is an important threat to world healthcare. The repetitive apparition of influenza pandemic outbreaks in the last 20years explains that manufacturing sector is still looking for more effective production processes to replace/supplement embryonated egg-based process. Cell-based production strategy, with a focus on avian cell lines, is one of the promising solutions. Three avian cell lines, namely duck EB66®cells (Valneva), duck AGE.CR® cells (Probiogen) and quail QOR/2E11 cells (Baxter), are now competing with traditional mammalian cell platforms (Vero and MDCK cells) used for influenza vaccine productions and are currently at advance stage of commercial development for the manufacture of influenza vaccines. The DuckCelt®-T17 cell line presented in this work is a novel avian cell line developed by Transgene. This cell line was generated from primary embryo duck cells with the constitutive expression of the duck telomerase reverse transcriptase (dTERT). The DuckCelt®-T17 cells were able to grow in batch suspension cultures and serum-free conditions up to 6.5×10(6)cell/ml and were easily scaled from 10ml up to 3l bioreactor. In the present study, DuckCelt®-T17 cell line was tested for its abilities to produce various human, avian and porcine influenza strains. Most of the viral strains were produced at significant infectious titers (>5.8 log TCID50/ml) with optimization of the infection conditions. Human strains H1N1 and H3N2, as well as all the avian strains tested (H5N2, H7N1, H3N8, H11N9, H12N5) were the most efficiently produced with highest titre reached of 9.05 log TCID50/ml for A/Panama/2007/99 influenza H3N2. Porcine strains were also greatly rescued with titres from 4 to 7 log TCID50/ml depending of the subtypes. Interestingly, viral kinetics showed maximal titers reached at 24h post-infection for most of the strains, allowing early harvest time (Time Of Harvest: TOH). The B strains present specific production kinetics with a delay of 24h before reaching the maximal viral particle release. Process optimization on H1N1 2009 human pandemic strain allowed identifying best operating conditions for production (MOI, trypsin concentration, cell density at infection) allowing improving the production level by 2 log. Our results suggest that the DuckCelt®-T17 cell line is a very promising platform for industrial production of influenza viruses and particularly for avian viral strains.

Pub.: 03 Jun '17, Pinned: 28 Jul '17

Serological and virological surveillance of avian influenza virus in domestic ducks of the north-east region of Bangladesh.

Abstract: Wild waterfowl are considered as the natural reservoir for avian influenza (AI) viruses. Bangladesh has been experiencing highly pathogenic avian influenza (HPAI) outbreaks since 2007, mostly in chickens and occasionally in ducks. Ducks play an important role in the persistence and genetic recombination of AI viruses. This paper presents the results of serological and virological monitoring of AI in domestic ducks in 2013 in the north-east region of Bangladesh.A total of 871 and 662 serum samples and 909 and 302 pairs of cloacal and oropharyngeal swabs from domestic ducks of Mymensingh and Sylhet division, respectively, were analysed. Antibodies to type A influenza virus were detected by blocking ELISA in 60.73 and 47.73% serum samples of Mymensingh and Sylhet division, respectively. On haemagglutination-inhibition (HI) test 17.5% of ELISA positive serum samples were found to be seropositive to H5 avian influenza virus. Five cloacal swabs and one oropharyngeal swab were positive for M gene of type A influenza virus by real time RT-PCR (rRT-PCR), but all of them were negative for H5 influenza virus. Three of the six viruses were successfully characterized as H1N5, H2N5 and H7N5 subtype of AI virus, the other three remained uncharacterized. On sequencing and phylogenetic analysis the HA and NA genes were found to be of Eurasian avian lineage. The H7 virus had cleavage site motif of low pathogenic virus.Low pathogenic avian influenza viruses were detected from apparently healthy domestic ducks. A small proportion of domestic ducks were found seropositive to H5 AI virus.

Pub.: 19 Jun '17, Pinned: 28 Jul '17

Longitudinal Study of Avian Influenza and Newcastle Disease in Village Poultry, Mali, 2009-2011.

Abstract: Newcastle disease (ND) is endemic in West Africa, which has also experienced outbreaks of highly pathogenic avian influenza (AI) H5N1 since 2006. We aimed to estimate the prevalence and incidence of AI and ND in village poultry in Mali and to identify associated risk factors. A longitudinal serologic study was conducted between November 2009 and February 2011 using ELISA commercial kits to detect antibodies. Sera (5963) were collected from 4890 different poultry. AI was rare, with a seroprevalence of 2.9% (95% confidence interval [CI] 2.3-3.5) and a seroincidence rate of 0.7 birds per 100 bird-months at risk (95% CI 0.4-1.0). AI antibodies were short lived, with a seroreversion rate of 25.4 birds per 100 bird-months at risk (95% CI 19.0-31.7). Risk factors for AI were limited: temporal variation occurred, but proximity to a water body was a risk factor only when large populations of wild waterbirds were present. ND was very common, with seroprevalence of 68.9% (95% CI 61.9-76.0) and a seroincidence rate of 15.9 birds per 100 bird-months at risk (95% CI 11.9-19.8). ND seroreversion rate was 6.2 birds per 100 bird-months at risk (95% CI 3.6-8.9). Regarding risk factors for ND, temporal variations occurred, and ND was more likely to be present in the Sudanian agro-ecological zone than in the Sahelian zone, in chickens than in other species, in flocks with higher numbers of Guinea fowl, and in flocks that had access to a waterbody. Control efforts would benefit from further increasing the ND vaccination coverage of village poultry, although this was already quite high (54.9%) for an African country. Seroconversion seemed satisfactory in vaccinated poultry, since 90.0% (95% CI 87.6-92.4) of these had ND antibodies. Further research should investigate the apparent lack of an epidemiologic role of domestic ducks for AI in Mali (unlike in Southeast Asia) and the potential role of Guinea fowl as a reservoir for ND.

Pub.: 01 Jul '17, Pinned: 28 Jul '17

Economic factors influencing zoonotic disease dynamics: demand for poultry meat and seasonal transmission of avian influenza in Vietnam.

Abstract: While climate is often presented as a key factor influencing the seasonality of diseases, the importance of anthropogenic factors is less commonly evaluated. Using a combination of methods - wavelet analysis, economic analysis, statistical and disease transmission modelling - we aimed to explore the influence of climatic and economic factors on the seasonality of H5N1 Highly Pathogenic Avian Influenza in the domestic poultry population of Vietnam. We found that while climatic variables are associated with seasonal variation in the incidence of avian influenza outbreaks in the North of the country, this is not the case in the Centre and the South. In contrast, temporal patterns of H5N1 incidence are similar across these 3 regions: periods of high H5N1 incidence coincide with Lunar New Year festival, occurring in January-February, in the 3 climatic regions for 5 out of the 8 study years. Yet, daily poultry meat consumption drastically increases during Lunar New Year festival throughout the country. To meet this rise in demand, poultry production and trade are expected to peak around the festival period, promoting viral spread, which we demonstrated using a stochastic disease transmission model. This study illustrates the way in which economic factors may influence the dynamics of livestock pathogens.

Pub.: 21 Jul '17, Pinned: 28 Jul '17

Pathogenicity of the Egyptian A/H5N1 avian influenza viruses in chickens.

Abstract: Long-term circulation of highly pathogenic avian influenza H5N1 viruses of clade 2.2.1 in Egyptian poultry since February 2006 resulted in the evolution of two distinct clades: 2.2.1.1 represents antigenic-drift variants isolated from vaccinated poultry and 2.2.1.2 that caused the newest upsurge in birds and humans in 2014/2015. In the present study, nine isolates were collected from chickens, ducks and turkeys representing the commercial and backyard sectors during the period 2009-2015. The subtyping was confirmed by hemagglutination inhibition (HI) test, RT-qPCR and sequence analysis. The Mean Death Time (MDT) and Intravenous Pathogenicity Index (IVPI) for all isolates were determined. Sequence analysis of the HA gene sequences of these viruses revealed that two viruses belonged to clade 2.2.1.1 and the rest were clade 2.2.1.2. Antigenic characterization of the viruses supported the results of the phylogenetic analysis. The MDT of the isolates ranged from 18 to 72 h and the IVPI values ranged from 2.3 to 2.9; viruses of the 2.2.1.1 clade were less virulent than those of the 2.2.1.2 clade. In addition, clade-specific polymorphism in the HA cleavage site was observed. These findings indicate the high and variable pathogenicity of H5N1 viruses of different clades and host-origin in Egypt. The upsurge of outbreaks in poultry in 2014/2015 was probably not due to a shift in virulence from earlier viruses.

Pub.: 26 Jul '17, Pinned: 28 Jul '17