Quantcast


CURATOR
A pinboard by
this curator

I am a virology researcher in a laboratory that specializes in swine disease.

PINBOARD SUMMARY

A pinboard curating articles about Coronaviruses and human disease.

In 10 Seconds While the majority of Cornaviruses don't cause any disease beyond cold symptoms, in the last decade two have emerged that pose a significant threat to human health: SARS and MERS. While no cases of SARS have been reported since the initial outbreak and MERS has thus-far remained geographically isolated in the middle east and has not spread efficiently from person to person, the high mortality rate of these diseases warrants close observation and study to prevent future outbreaks.

History The following publications review the history of SARS and MERS infections in humans, from the initial outbreak of SARS in 2002 to the current MERS disease in Middle Eastern countries.

  1. Overview of Both Diseases
  2. MERS Disease: Emergence, History, and Current Status
  3. SARS Outbreak, Epidemic, and Control

Why are these diseases a threat to human health? While the majority of Coronavirus infections in humans lead to cold and flu-like symptoms, some Coronaviruses have emerged that pose a more significant threat. The Center for Infectious Disease Research and Policy estimates the fatality rate for SARS to be 14 to 15%, with the rate soaring to 50% for people over the age of 64! Additionally, the World Health Organization estimates that 35% of people infected with MERS have died. While better recognition of the threat these diseases pose and current research into better methods of controlling outbreaks and treating those who are infected should improve those death rates, these diseases are still very dangerous.

So what current research insights have been gained? -A DNA vaccine targeting the S1 protein of MERS has induced protective immunity in mice. (Link to paper)

-Antibody therapies are being tested against MERS-CoV as well. (Link to paper)

-A broad spectrum drug treatment has shown some efficacy against respiratory RNA viruses, including both SARS and MERS (Link to Paper)

12 ITEMS PINNED

Broad-spectrum inhibition of common respiratory RNA viruses by a pyrimidine synthesis inhibitor with involvement of the host antiviral response.

Abstract: Our previous screening of 50 240 structurally diverse compounds led to the identification of 39 influenza A virus infection inhibitors (Kao R.Y., Yang D., Lau L.S., Tsui W.H., Hu L. et al. Nat Biotechnol 2010;28:600-605). Further screening of these compounds against common respiratory viruses led to the discovery of compound FA-613. This inhibitor exhibited low micromolar antiviral activity against various influenza A and B virus strains, including the highly pathogenic influenza A strains H5N1 and H7N9, enterovirus A71, respiratory syncytial virus, human rhinovirus A, SARS- and MERS-coronavirus. No significant cellular toxicity was observed at the effective concentrations. Animal studies showed an improved survival rate in BALB/c mice that received intranasal FA-613 treatments against a lethal dose infection of A/HK/415742Md/2009 (H1N1). Further cell-based assays indicated that FA-613 interfer with the de novo pyrimidine biosynthesis pathway by targeting the dihydroorotate dehydrogenase. Surprisingly, FA-613 lost its antiviral potency in the interferon-deficient Vero cell line, while maintaining its inhibitory activity in an interferon-competent cell line which showed elevated expression of host antiviral genes when infected in the presence of FA-613. Further investigation of the specific connection between pyrimidine synthesis inhibition and the induction of host innate immunity might aid clinical development of this type of drug in antiviral therapies. Therefore, in acute cases of respiratory tract infections, when rapid diagnostics of the causative agent are not readily available, an antiviral drug with properties like FA-613 could prove to be very valuable.

Pub.: 31 May '17, Pinned: 31 May '17

Immunogenicity of Candidate MERS-CoV DNA Vaccines Based on the Spike Protein.

Abstract: MERS-coronavirus is a novel zoonotic pathogen which spread rapidly to >25 countries since 2012. Its apparent endemicity and the wide spread of its reservoir host (dromedary camels) in the Arabian Peninsula highlight the ongoing public health threat of this virus. Therefore, development of effective prophylactic vaccine needs to be urgently explored given that there are no approved prophylactics or therapeutics for humans or animals to date. Different vaccine candidates have been investigated but serious safety concerns remain over protein or full-length spike (S) protein-based vaccines. Here, we investigated the immunogenicity of naked DNA vaccines expressing different fragments of MERS-CoV S protein in mice. We found that plasmids expressing full-length (pS) or S1-subunit (pS1) could induce significant levels of S1-specific antibodies (Abs) but with distinct IgG isotype patterns. Specifically, pS1 immunization elicited a balanced Th1/Th2 response and generally higher levels of all IgG isotypes compared to pS vaccination. Interestingly, only mice immunized with pS1 demonstrated significant S1-specific cellular immune response. Importantly, both constructs induced cross-neutralizing Abs against multiple strains of human and camel origins. These results indicate that vaccines expressing S1-subunit of the MERS-CoV S protein could represent a potential vaccine candidate without the possible safety concerns associated with full-length protein-based vaccines.

Pub.: 24 Mar '17, Pinned: 14 Apr '17

From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses.

Abstract: This article introduces a series of invited papers in Antiviral Research marking the 10th anniversary of the outbreak of severe acute respiratory syndrome (SARS), caused by a novel coronavirus that emerged in southern China in late 2002. Until that time, coronaviruses had not been recognized as agents causing severe disease in humans, hence, the emergence of the SARS-CoV came as a complete surprise. Research during the past ten years has revealed the existence of a diverse pool of coronaviruses circulating among various bat species and other animals, suggesting that further introductions of highly pathogenic coronaviruses into the human population are not merely probable, but inevitable. The recent emergence of another coronavirus causing severe disease, Middle East respiratory syndrome (MERS), in humans, has made it clear that coronaviruses pose a major threat to human health, and that more research is urgently needed to elucidate their replication mechanisms, identify potential drug targets, and develop effective countermeasures. In this series, experts in many different aspects of coronavirus replication and disease will provide authoritative, up-to-date reviews of the following topics: - clinical management and infection control of SARS; - reservoir hosts of coronaviruses; - receptor recognition and cross-species transmission of SARS-CoV; - SARS-CoV evasion of innate immune responses; - structures and functions of individual coronaviral proteins; - anti-coronavirus drug discovery and development; and - the public health legacy of the SARS outbreak. Each article will be identified in the last line of its abstract as belonging to the series "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses."

Pub.: 10 Sep '13, Pinned: 14 Apr '17

MERS coronavirus: diagnostics, epidemiology and transmission.

Abstract: The first known cases of Middle East respiratory syndrome (MERS), associated with infection by a novel coronavirus (CoV), occurred in 2012 in Jordan but were reported retrospectively. The case first to be publicly reported was from Jeddah, in the Kingdom of Saudi Arabia (KSA). Since then, MERS-CoV sequences have been found in a bat and in many dromedary camels (DC). MERS-CoV is enzootic in DC across the Arabian Peninsula and in parts of Africa, causing mild upper respiratory tract illness in its camel reservoir and sporadic, but relatively rare human infections. Precisely how virus transmits to humans remains unknown but close and lengthy exposure appears to be a requirement. The KSA is the focal point of MERS, with the majority of human cases. In humans, MERS is mostly known as a lower respiratory tract (LRT) disease involving fever, cough, breathing difficulties and pneumonia that may progress to acute respiratory distress syndrome, multiorgan failure and death in 20% to 40% of those infected. However, MERS-CoV has also been detected in mild and influenza-like illnesses and in those with no signs or symptoms. Older males most obviously suffer severe disease and MERS patients often have comorbidities. Compared to severe acute respiratory syndrome (SARS), another sometimes- fatal zoonotic coronavirus disease that has since disappeared, MERS progresses more rapidly to respiratory failure and acute kidney injury (it also has an affinity for growth in kidney cells under laboratory conditions), is more frequently reported in patients with underlying disease and is more often fatal. Most human cases of MERS have been linked to lapses in infection prevention and control (IPC) in healthcare settings, with approximately 20% of all virus detections reported among healthcare workers (HCWs) and higher exposures in those with occupations that bring them into close contact with camels. Sero-surveys have found widespread evidence of past infection in adult camels and limited past exposure among humans. Sensitive, validated reverse transcriptase real-time polymerase chain reaction (RT-rtPCR)-based diagnostics have been available almost from the start of the emergence of MERS. While the basic virology of MERS-CoV has advanced over the past three years, understanding of the interplay between camel, environment, and human remains limited.

Pub.: 24 Dec '15, Pinned: 14 Apr '17

From SARS coronavirus to novel animal and human coronaviruses.

Abstract: In 2003, severe acute respiratory syndrome coronavirus (SARS-CoV) caused one of the most devastating epidemics known to the developed world. There were two important lessons from this epidemic. Firstly, coronaviruses, in addition to influenza viruses, can cause severe and rapidly spreading human infections. Secondly, bats can serve as the origin and natural animal reservoir of deadly human viruses. Since then, researchers around the world, especially those in Asia where SARS-CoV was first identified, have turned their focus to find novel coronaviruses infecting humans, bats, and other animals. Two human coronaviruses, HCoV-HKU1 and HCoV-NL63, were identified shortly after the SARS-CoV epidemic as common causes of human respiratory tract infections. In 2012, a novel human coronavirus, now called Middle East respiratory syndrome coronavirus (MERS-CoV), has emerged in the Middle East to cause fatal human infections in three continents. MERS-CoV human infection is similar to SARS-CoV in having a high fatality rate and the ability to spread from person to person which resulted in secondary cases among close contacts including healthcare workers without travel history to the Middle East. Both viruses also have close relationships with bat coronaviruses. New cases of MERS-CoV infection in humans continue to occur with the origins of the virus still unknown in many cases. A multifaceted approach is necessary to control this evolving MERS-CoV outbreak. Source identification requires detailed epidemiological studies of the infected patients and enhanced surveillance of MERS-CoV or similar coronaviruses in humans and animals. Early diagnosis of infected patients and appropriate infection control measures will limit the spread in hospitals, while social distancing strategies may be necessary to control the outbreak in communities if it remained uncontrolled as in the SARS epidemic.

Pub.: 27 Aug '13, Pinned: 14 Apr '17