Quantcast


CURATOR
A pinboard by
Chris Woods

Graduate Student, University of Washington

PINBOARD SUMMARY

Structural, functional, and biophysical analysis of disease-associated protein mutants.

I work on a protein called HSPB5 that is responsible for keeping our cells healthy under stressful conditions, such as those following heart attack. Inherited changes in the amino acid sequence of this protein are associated with cataract and myopathy development. Cataract is the leading cause of blindness worldwide, and this work could form the basis for future medical treatments to prevent and reverse loss of sight. It may also shed light on molecular determinants of myopathy development both in skeletal and cardiac muscle.

7 ITEMS PINNED

N-terminal domain of alphaB-crystallin provides a conformational switch for multimerization and structural heterogeneity.

Abstract: The small heat shock protein (sHSP) αB-crystallin (αB) plays a key role in the cellular protection system against stress. For decades, high-resolution structural studies on heterogeneous sHSPs have been confounded by the polydisperse nature of αB oligomers. We present an atomic-level model of full-length αB as a symmetric 24-subunit multimer based on solid-state NMR, small-angle X-ray scattering (SAXS), and EM data. The model builds on our recently reported structure of the homodimeric α-crystallin domain (ACD) and C-terminal IXI motif in the context of the multimer. A hierarchy of interactions contributes to build multimers of varying sizes: Interactions between two ACDs define a dimer, three dimers connected by their C-terminal regions define a hexameric unit, and variable interactions involving the N-terminal region define higher-order multimers. Within a multimer, N-terminal regions exist in multiple environments, contributing to the heterogeneity observed by NMR. Analysis of SAXS data allows determination of a heterogeneity parameter for this type of system. A mechanism of multimerization into higher-order asymmetric oligomers via the addition of up to six dimeric units to a 24-mer is proposed. The proposed asymmetric multimers explain the homogeneous appearance of αB in negative-stain EM images and the known dynamic exchange of αB subunits. The model of αB provides a structural basis for understanding known disease-associated missense mutations and makes predictions concerning substrate binding and the reported fibrilogenesis of αB.

Pub.: 06 Apr '11, Pinned: 04 Jul '17

Structural and mechanistic implications of metal binding in the small heat-shock protein αB-crystallin.

Abstract: The human small heat-shock protein αB-crystallin (αB) rescues misfolded proteins from irreversible aggregation during cellular stress. Binding of Cu(II) was shown to modulate the oligomeric architecture and the chaperone activity of αB. However, the mechanistic basis of this stimulation is so far not understood. We provide here first structural insights into this Cu(II)-mediated modulation of chaperone function using NMR spectroscopy and other biophysical approaches. We show that the α-crystallin domain is the elementary Cu(II)-binding unit specifically coordinating one Cu(II) ion with picomolar binding affinity. Putative Cu(II) ligands are His(83), His(104), His(111), and Asp(109) at the dimer interface. These loop residues are conserved among different metazoans, but also for human αA-crystallin, HSP20, and HSP27. The involvement of Asp(109) has direct implications for dimer stability, because this residue forms a salt bridge with the disease-related Arg(120) of the neighboring monomer. Furthermore, we observe structural reorganization of strands β2-β3 triggered by Cu(II) binding. This N-terminal region is known to mediate both the intermolecular arrangement in αB oligomers and the binding of client proteins. In the presence of Cu(II), the size and the heterogeneity of αB multimers are increased. At the same time, Cu(II) increases the chaperone activity of αB toward the lens-specific protein β(L)-crystallin. We therefore suggest that Cu(II) binding unblocks potential client binding sites and alters quaternary dynamics of both the dimeric building block as well as the higher order assemblies of αB.

Pub.: 18 Nov '11, Pinned: 01 Jul '17