Quantcast


CURATOR
A pinboard by
this curator

Dr Bozic is a Lecturer in the Department of Psychology, University of Cambridge.

PINBOARD SUMMARY

Mirjana Bozic

Dr Bozic is a cognitive neuroscientist who studies language. She is interested in understanding how this powerful communication system is processed in the mind and brain. Her research focuses on the neural mechanisms that support spoken language comprehension in monolingual and bilingual listerens. Using neuroimaging and behavioural techniques, she investigates how different properties of the speech input engage the underlying neural architecture to produce successful comprehension.

10 ITEMS PINNED

Domain-specific and Domain-general Processing in Left Peri-sylvian Cortex: Evidence from Russian.

Abstract: The processing of words containing inflectional affixes triggers morphophonological parsing and affix-related grammatical information processing. Increased perceptual complexity related to stem-affix parsing is hypothesized to create predominantly domain-general processing demands, whereas grammatical processing primarily implicates domain-specific linguistic demands. Exploiting the properties of Russian morphology and syntax, we designed an fMRI experiment to separate out the neural systems supporting these two demand types, contrasting inflectional complexity, syntactic (phrasal) complexity, and derivational complexity in three comparisons: (a) increase in parsing demands while controlling for grammatical complexity (inflections vs. phrases), (b) increase in grammatical processing demands, and (c) combined demands of morphophonological parsing and grammatical processing (inflections and phrases vs. derivations). Left inferior frontal and bilateral temporal areas are most active when the two demand types are combined, with inflectional and phrasal complexity contrasting strongly with derivational complexity (which generated only bilateral temporal activity). Increased stem-affix parsing demands alone did not produce unique activations, whereas grammatical structure processing activated bilateral superior and middle temporal areas. Selective left frontotemporal language system engagement for short phrases and inflections seems to be driven by simultaneous and interdependent domain-general and domain-specific processing demands.

Pub.: 21 Sep '16, Pinned: 09 May '17

Decompositional Representation of Morphological Complexity: Multivariate fMRI Evidence from Italian.

Abstract: Derivational morphology is a cross-linguistically dominant mechanism for word formation, combining existing words with derivational affixes to create new word forms. However, the neurocognitive mechanisms underlying the representation and processing of such forms remain unclear. Recent cross-linguistic neuroimaging research suggests that derived words are stored and accessed as whole forms, without engaging the left-hemisphere perisylvian network associated with combinatorial processing of syntactically and inflectionally complex forms. Using fMRI with a "simple listening" no-task procedure, we reexamine these suggestions in the context of the root-based combinatorially rich Italian lexicon to clarify the role of semantic transparency (between the derived form and its stem) and affix productivity in determining whether derived forms are decompositionally represented and which neural systems are involved. Combined univariate and multivariate analyses reveal a key role for semantic transparency, modulated by affix productivity. Opaque forms show strong cohort competition effects, especially for words with nonproductive suffixes (ventura, "destiny"). The bilateral frontotemporal activity associated with these effects indicates that opaque derived words are processed as whole forms in the bihemispheric language system. Semantically transparent words with productive affixes (libreria, "bookshop") showed no effects of lexical competition, suggesting morphologically structured co-representation of these derived forms and their stems, whereas transparent forms with nonproductive affixes (pineta, pine forest) show intermediate effects. Further multivariate analyses of the transparent derived forms revealed affix productivity effects selectively involving left inferior frontal regions, suggesting that the combinatorial and decompositional processes triggered by such forms can vary significantly across languages.

Pub.: 16 Jul '16, Pinned: 09 May '17

Grammatical analysis as a distributed neurobiological function.

Abstract: Language processing engages large-scale functional networks in both hemispheres. Although it is widely accepted that left perisylvian regions have a key role in supporting complex grammatical computations, patient data suggest that some aspects of grammatical processing could be supported bilaterally. We investigated the distribution and the nature of grammatical computations across language processing networks by comparing two types of combinatorial grammatical sequences--inflectionally complex words and minimal phrases--and contrasting them with grammatically simple words. Novel multivariate analyses revealed that they engage a coalition of separable subsystems: inflected forms triggered left-lateralized activation, dissociable into dorsal processes supporting morphophonological parsing and ventral, lexically driven morphosyntactic processes. In contrast, simple phrases activated a consistently bilateral pattern of temporal regions, overlapping with inflectional activations in L middle temporal gyrus. These data confirm the role of the left-lateralized frontotemporal network in supporting complex grammatical computations. Critically, they also point to the capacity of bilateral temporal regions to support simple, linear grammatical computations. This is consistent with a dual neurobiological framework where phylogenetically older bihemispheric systems form part of the network that supports language function in the modern human, and where significant capacities for language comprehension remain intact even following severe left hemisphere damage.

Pub.: 26 Nov '14, Pinned: 09 May '17

Neurobiological systems for lexical representation and analysis in English.

Abstract: Current research suggests that language comprehension engages two joint but functionally distinguishable neurobiological processes: a distributed bilateral system, which supports general perceptual and interpretative processes underpinning speech comprehension, and a left hemisphere (LH) frontotemporal system, selectively tuned to the processing of combinatorial grammatical sequences, such as regularly inflected verbs in English [Marslen-Wilson, W. D., & Tyler, L. K. Morphology, language and the brain: The decompositional substrate for language comprehension. Philosophical Transactions of the Royal Society: Biological Sciences, 362, 823-836, 2007]. Here we investigated how English derivationally complex words engage these systems, asking whether they selectively activate the LH system in the same way as inflections or whether they primarily engage the bilateral system that support nondecompositional access. In an fMRI study, we saw no evidence for selective activation of the LH frontotemporal system, even for highly transparent forms like bravely. Instead, a combination of univariate and multivariate analyses revealed the engagement of a distributed bilateral system, modulated by factors of perceptual complexity and semantic transparency. We discuss the implications for theories of the processing and representation of English derivational morphology and highlight the importance of neurobiological constraints in understanding these processes.

Pub.: 15 May '13, Pinned: 09 May '17

Bihemispheric foundations for human speech comprehension.

Abstract: Emerging evidence from neuroimaging and neuropsychology suggests that human speech comprehension engages two types of neurocognitive processes: a distributed bilateral system underpinning general perceptual and cognitive processing, viewed as neurobiologically primary, and a more specialized left hemisphere system supporting key grammatical language functions, likely to be specific to humans. To test these hypotheses directly we covaried increases in the nonlinguistic complexity of spoken words [presence or absence of an embedded stem, e.g., claim (clay)] with variations in their linguistic complexity (presence of inflectional affixes, e.g., play+ed). Nonlinguistic complexity, generated by the on-line competition between the full word and its onset-embedded stem, was found to activate both right and left fronto-temporal brain regions, including bilateral BA45 and -47. Linguistic complexity activated left-lateralized inferior frontal areas only, primarily in BA45. This contrast reflects a differentiation between the functional roles of a bilateral system, which supports the basic mapping from sound to lexical meaning, and a language-specific left-lateralized system that supports core decompositional and combinatorial processes invoked by linguistically complex inputs. These differences can be related to the neurobiological foundations of human language and underline the importance of bihemispheric systems in supporting the dynamic processing and interpretation of spoken inputs.

Pub.: 22 Sep '10, Pinned: 09 May '17

Differentiating morphology, form, and meaning: neural correlates of morphological complexity.

Abstract: The role of morphological structure in word recognition raises issues about the nature and structure of the language system. One major issue is whether morphological factors provide an independent principle for lexical organization and processing, or whether morphological effects can be reduced to the joint contribution of form and meaning. The independence of form, meaning, and morphological structure can be directly investigated using derivationally complex words, because derived words can share form but need not share meaning (e.g., archer-arch). We used an event-related functional magnetic resonance imaging paradigm to investigate priming between pairs of words that potentially shared a stem, where this link was either semantically transparent (e.g., bravely-brave) or opaque (e.g., archer-arch). These morphologically related pairs were contrasted with identity priming (e.g., mist-mist) and priming for pairs of words that shared only form (e.g., scandal-scan) or meaning (e.g., accuse-blame). Morphologically related words produced significantly reduced activation in left frontal regions, whether the pairs were semantically transparent or opaque. The effect was not found for any of the control conditions (identity, form, or meaning). Morphological effects were observed separately from processing form and meaning and we propose that they reflect segmentation of complex derived words, a process triggered by surface morphological structure of complex words.

Pub.: 24 Aug '07, Pinned: 09 May '17