Quantcast


CURATOR
A pinboard by
Johanna Melke

PhD candidate, Eindhoven University of Technology

PINBOARD SUMMARY

Growing bones with blood vessels in the laboratory

Bone defects that can occur after complicated factures or bone tumors occur more and more often in our aging world population. Tissue engineered bones which are grown in the laboratory are a promising tool to treat such bone defects. However, the lack of blood vessel formation is a major limitation for tissue engineered bone to become clinically successful as an implant. Without blood vessels the cells in the implant do not survive since the blood vessels from the surrounding tissue do not grow into the implant fast enough. Almost all tissues in our body depend on blood vessels for nutrient and oxygen transport as well as waste removal. Oxygen for example can only diffuse efficiently into tissues that are smaller than 0.2 mm. For bigger tissues, blood-vessel formation is required.

To tackle this problem, I developed a tissue engineered bone which already contains a vascular network during my PhD. I grew stem cells derived from human bone marrow (which can form bone) and endothelial cells derived from human umbilical veins (which can form blood vessels) together on scaffolds acting as 3D support structures.

Using different growth factors and chemical compounds which helped mimicking the natural environment in our bodies, we observed the formation of 3D vessel-like structures in these constructs. The vessels were spanning the pores of the scaffold and grew in between the surrounding stem cells. If there were no stem cells present, then the endothelial cells failed to form blood vessels. While the stem cells stabilized the vascular networks, the endothelial cells guided the stem cells towards becoming bone matrix forming osteoblasts. Without endothelial cells being present, the stem cells formed bone at a much slower rate.

This prevascularized bone tissue model sets the ground for studies coupling blood vessel formation with osteogenesis in a 3D setting and advances bone tissue engineered constructs to recapitulate human physiology more closely. Our findings underline the importance of 3D synergistic cell-cell interactions in the regulation of stem cells and endothelial behavior, suggesting that heterocellular constructs may be beneficial for bone repair. This knowledge will help us to improve current therapies for bone defects and advance the growing field of regenerative medicine.

15 ITEMS PINNED

Osteogenic differentiation and angiogenesis with cocultured adipose-derived stromal cells and bone marrow stromal cells.

Abstract: The purpose of this study was to determine the influence of cocultured adipose-derived stromal cells (ASCs) in enhancing the osteogenic differentiation and angiogenesis of bone marrow stromal cells (BMSCs) as well as the underlying mechanism and the optimal ratio. Two in vitro coculture models, segregated cocultures using transwell and mixed cocultures, were employed to assess the indirect and direct effects of coculture respectively. Coculture was carried out for 14 days using 1 × 10(5) BMSCs and ASCs of variable number. BMSCs, ASCs, or both were seeded in PLGA scaffold and implanted in the subcutaneous tissue of 25 nude mice for in vivo analysis of angiogenesis. To evaluate the orthotopic bone formation, critical size calvarial defects were created on 20 mice, and implanted with hydroxyapatite/β-tricalcium phosphate granules plus BMSCs, ASCs, or both. From both transwell and mixed coculture model, 1 × 10(5) BMSCs cocultured with 0.5 × 10(5) ASCs showed significantly greater osteogenic differentiation and mineralization than BMSCs alone. The mixed ASC/BMSC coculture at or above a ratio of 0.5/1 showed increased secretion of vascular endothelial growth factor (VEGF), and induced effective tube formation from human umbilical vein endothelial cells, which were comparable to ASCs. Cytokine profiling assay and gene expression study showed elevated levels of angiogenic factors VEGF and CXCL1, osteogenic factor Wnt5a as well as transforming growth factor (TGF)-βR1 and SMAD3 from BMSCs when cocultured with ASCs. After 5 weeks of implantation, polylactic-co-glycolic acid (PLGA)-ASCs-BMSCs had a number of vascular structures comparable to PLGA-ASCs and significantly greater than PLGA-BMSCs. Calvarial defects treated with ceramic/BMSCs/ASCs had greater area of repair and better reconstitution of osseous structure than the defects treated with ceramic/ASCs or ceramic/BMSCs after 10 weeks. In conclusion, ASCs added to BMSCs promoted osteogenesis and angiogenesis at the optimal ASC/BMSC ratio of 0.5/1.

Pub.: 25 Mar '14, Pinned: 31 Jan '18

Cell interactions between human progenitor-derived endothelial cells and human mesenchymal stem cells in a three-dimensional macroporous polysaccharide-based scaffold promote osteogenesis.

Abstract: Several studies have reported the benefits of mesenchymal stem cells (MSCs) for bone tissue engineering. However, vascularization remains one of the main obstacles that must be overcome to reconstruct large bone defects. In vitro prevascularization of the three-dimensional (3-D) constructs using co-cultures of human progenitor-derived endothelial cells (PDECs) with human bone marrow mesenchymal stem cells (HBMSCs) appeared as a potential strategy. However, the crosstalk between the two lineages has been studied in two-dimensional (2-D), but remains unknown in 3-D. The aim of this study is to investigate the cell interactions between PDECs and HBMSCs in a porous matrix composed of polysaccharides. This biodegradable scaffold promotes cell interactions by inducing multicellular aggregates composed of HBMSCs surrounded by PDECs. Cell aggregation contributes to the formation of junctional proteins composed of Connexin43 (Cx43) and VE-cadherin, and an activation of osteoblastic differentiation of HBMSCs stimulated by the presence of PDECs. Inhibition of Cx43 by mimetic peptide 43GAP27 induced a decrease in mRNA levels of Cx43 and all the bone-specific markers. Finally, subcutaneous implantations for 3 and 8 weeks in NOG mice revealed an increase in osteoid formation with the tissue-engineered constructs seeded with HBMSCs/PDECs compared with those loaded with HBMSCs alone. Taking together, these results demonstrate that this 3-D microenvironment favored cell communication, osteogenesis and bone formation.

Pub.: 08 Jun '13, Pinned: 31 Jan '18

Paracrine effects influenced by cell culture medium and consequences on microvessel-like structures in cocultures of mesenchymal stem cells and outgrowth endothelial cells.

Abstract: Mesenchymal stem cells (MSC) from bone marrow and outgrowth endothelial cells (OEC) from peripheral blood are considered as attractive cell types for applications in regenerative medicine aiming to build up complex vascularized tissue-engineered constructs. MSC provide several advantages such as the potential to differentiate to osteoblasts and to support the neovascularization process by release of proangiogenic factors. On the other hand, the neovascularization process can be actively supported by OEC forming perfused vascular structures after co-implantation with other cell types. In this study the formation of angiogenic structures in vitro was investigated in cocultures of MSC and OEC, cultured either in the medium for osteogenic differentiation of MSC (ODM) or in the medium for OEC cultivation endothelial cell growth medium-2 (EGM2 Bullet Kit). After 2 weeks, cocultures in EGM2 formed more microvessel-like structures compared to cocultures in ODM as demonstrated by immunofluorescence staining for the endothelial marker CD31. Increased expression of CD31 and CD146 in quantitative real-time polymerase chain reaction as well as a higher percentage of CD31- and CD146-positive cells in flow cytometry indicated a beneficial influence of EGM2 on endothelial cell growth and function. In addition, the improved formation of vascular structures in EGM2 correlates with higher levels of the proangiogenic factor vascular endothelial growth factor and platelet-derived growth factor in the supernatant of cocultures as well as in monocultures of MSC when cultivated in EGM-2. Nevertheless, ODM was more suitable for the differentiation of MSC to osteoblastic lineages in the cocultures, whereas EGM2 favored factors involved in vessel stabilization by pericytes. In conclusion, this study highlights the importance of medium components for cell interaction triggering the formation of angiogenic structures.

Pub.: 03 May '11, Pinned: 31 Jan '18

Contrasting effects of vasculogenic induction upon biaxial bioreactor stimulation of mesenchymal stem cells and endothelial progenitor cells cocultures in three-dimensional scaffolds under in vitro and in vivo paradigms for vascularized bone tissue engineering.

Abstract: Clinical translation of bone tissue engineering approaches for fracture repair has been hampered by inadequate vascularization required for maintaining cell survival, skeletal regeneration, and remodeling. The potential of vasculature formation within tissue-engineered grafts depends on various factors, including an appropriate choice of scaffold and its microarchitectural design for the support of tissue ingrowth and vessel infiltration, vasculogenic potential of cell types and mechanostimulation on cells to enhance cytokine expression. Here, we demonstrated the effect of biomechanical stimulation on vasculogenic and bone-forming capacity of umbilical-cord-blood endothelial progenitor cells (UCB-EPC) and human fetal bone marrow-derived mesenchymal stem cell (hfMSC) seeded within macroporous scaffolds and cocultured dynamically in a biaxial bioreactor. Dynamically cultured EPC/hfMSC constructs generated greater mineralization and calcium deposition consistently over 14 days of culture (1.7-fold on day 14; p<0.05). However, in vitro vessel formation was not observed as compared to an extensive EPC-vessel network formed under static culture on day 7. Subsequent subcutaneous implantations in NOD/SCID mice showed 1.4-fold higher human:mouse cell chimerism (p<0.001), with a more even cellular distribution throughout the dynamically cultured scaffolds. In addition, there was earlier evidence of vessel infiltration into the scaffold and a trend toward increased ectopic bone formation, suggesting improved efficacy and cellular survival through early vascularization upon biomechanical stimulation. The integrative use of bioreactor culture systems with macroporous scaffolds and cocultured osteogenic and vasculogenic cells promotes maturation of EPC/hfMSC-scaffold grafts necessary for vascularized bone tissue engineering applications.

Pub.: 30 Oct '12, Pinned: 28 Jan '18

Dynamics of bone marrow-derived endothelial progenitor cell/mesenchymal stem cell interaction in co-culture and its implications in angiogenesis.

Abstract: Tissue engineering aims to regenerate tissues and organs by using cell and biomaterial-based approaches. One of the current challenges in the field is to promote proper vascularization in the implant to prevent cell death and promote host integration. Bone marrow endothelial progenitor cells (BM-EPCs) and mesenchymal stem cells (MSCs) are bone marrow resident stem cells widely employed for proangiogenic applications. In vivo, they are likely to interact frequently both in the bone marrow and at sites of injury. In this study, the physical and biochemical interactions between BM-EPCs and MSCs in an in vitro co-culture system were investigated to further clarify their roles in vascularization. BM-EPC/MSC co-cultures established close cell-cell contacts soon after seeding and self-assembled to form elongated structures at 3days. Besides direct contact, cells also exhibited vesicle transport phenomena. When co-cultured in Matrigel, tube formation was greatly enhanced even in serum-starved, growth factor free medium. Both MSCs and BM-EPCs contributed to these tubes. However, cell proliferation was greatly reduced in co-culture and morphological differences were observed. Gene expression and cluster analysis for wide panel of angiogenesis-related transcripts demonstrated up-regulation of angiogenic markers but down-regulation of many other cytokines. These data suggest that cross-talk occurs in between BM-EPCs and MSCs through paracrine and direct cell contact mechanisms leading to modulation of the angiogenic response.

Pub.: 25 Aug '10, Pinned: 28 Jan '18

A porous scaffold for bone tissue engineering/45S5 Bioglass derived porous scaffolds for co-culturing osteoblasts and endothelial cells.

Abstract: One of the major factors in the therapeutic success of bone tissue engineered scaffolds is the ability of the construct to vascularise post implantation. One of the approaches for improving vascularisation within scaffolds has been to co-culture human umbilical vein endothelial cells (HUVECS) with human osteoblasts (HOBS), which may then promote vascularisation and facilitate tissue regeneration. However, in order to mimic a natural physiological niche it is vital that the scaffold is able to support and promote the proliferation of both cell types and thus become a viable tissue engineered construct. In this study we report the development of a porous bioactive glass-ceramic construct and examine the interaction with human umbilical vein endothelial cells (HUVEC's) and human osteoblast-like cell both in mono and co-culture. The study clearly demonstrated that the scaffolds were able to support both endothelial and human osteoblast cell proliferation both in mono and co-culture. A comparison of the proliferation response of HUVEC and HOB in mono-culture on the test scaffolds and the commercial porous hydroxyapatite was assessed over a 28 day period (4, 7, 14, 21 and 28 days), using alamar Blue assay. Proliferation of HOB cells seeded in the scaffolds was consistently shown to be above those observed on commercial HA scaffolds.

Pub.: 22 Jan '10, Pinned: 28 Jan '18

Engineering vascularized bone grafts by integrating a biomimetic periosteum and β-TCP scaffold.

Abstract: Treatment of large bone defects using synthetic scaffolds remain a challenge mainly due to insufficient vascularization. This study is to engineer a vascularized bone graft by integrating a vascularized biomimetic cell-sheet-engineered periosteum (CSEP) and a biodegradable macroporous beta-tricalcium phosphate (β-TCP) scaffold. We first cultured human mesenchymal stem cells (hMSCs) to form cell sheet and human umbilical vascular endothelial cells (HUVECs) were then seeded on the undifferentiated hMSCs sheet to form vascularized cell sheet for mimicking the fibrous layer of native periosteum. A mineralized hMSCs sheet was cultured to mimic the cambium layer of native periosteum. This mineralized hMSCs sheet was first wrapped onto a cylindrical β-TCP scaffold followed by wrapping the vascularized HUVEC/hMSC sheet, thus generating a biomimetic CSEP on the β-TCP scaffold. A nonperiosteum structural cell sheets-covered β-TCP and plain β-TCP were used as controls. In vitro studies indicate that the undifferentiated hMSCs sheet facilitated HUVECs to form rich capillary-like networks. In vivo studies indicate that the biomimetic CSEP enhanced angiogenesis and functional anastomosis between the in vitro preformed human capillary networks and the mouse host vasculature. MicroCT analysis and osteocalcin staining show that the biomimetic CSEP/β-TCP graft formed more bone matrix compared to the other groups. These results suggest that the CSEP that mimics the cellular components and spatial configuration of periosteum plays a critical role in vascularization and osteogenesis. Our studies suggest that a biomimetic periosteum-covered β-TCP graft is a promising approach for bone regeneration.

Pub.: 27 May '14, Pinned: 28 Jan '18

Engineering of vascularized transplantable bone tissues: induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop.

Abstract: Vascularization remains an obstacle to engineering of larger volume bone tissues. Our aim was to induce axial vascularization in a processed bovine cancellous bone (PBCB) matrix using an arteriovenous (AV) loop (artery, vein graft, and vein).Custom-made PBCB discs (9 x 5 mm) were implanted into rats. In group A (n = 19), the matrices were inserted into microsurgically constructed AV loops between the femoral vessels using a vein graft from the contralateral side. In group B (n = 19), there was no vascular carrier. The matrices were encased in isolation chambers. After 2, 4, and 8 weeks, the animals were perfused with India ink via the abdominal aorta. Matrices were explanted and subjected to histological and morphometric analysis. Results were compared with intravital dynamic micro & magnetic resonance imaging and scanning electron microscopy images of vascular corrosion replicas.In group A, significant vascularization of the matrix had occurred by the 8th week. At this time, vascular remodeling with organization into vessels of different sizes was evident. Blood vessels originated from all 3 zones of the AV loop. Group A was significantly superior to group B in terms of vascular density and vascularization kinetics.This study demonstrates for the first time successful vascularization of solid porous matrices by means of an AV loop. Injection of osteogenic cells into axially prevascularized matrices may eventually create functional bioartificial bone tissues for reconstruction of large defects.

Pub.: 08 Aug '06, Pinned: 28 Jan '18

Collagen Hydrogel Scaffold Promotes Mesenchymal Stem Cell and Endothelial Cell Coculture for Bone Tissue Engineering.

Abstract: The generation of functional, vascularized tissues is a key challenge for the field of tissue engineering. Before clinical implantations of such tissue engineered bone constructs can succeed, tactics to promote neovascularization need to be strengthened. We have previously demonstrated that the tubular perfusion system (TPS) bioreactor is an effective culturing method to augment osteogenic differentiation and maintain viability of human mesenchymal stem cells (hMSC). Here, we devised a strategy to address the need for a functional microvasculature by designing an in vitro coculture system that simultaneously cultures osteogenic differentiating hMSCs with endothelial cells (ECs). We utilized the TPS bioreactor as a dynamic coculture environment, which we hypothesize will encourage prevascularization of endothelial cells and early formation of bone tissue and could aid in anastomosis of the graft with the host vasculature after patient implantation. To evaluate the effect of different natural scaffolds for this coculture system, the cells were encapsulated in alginate and/or collagen hydrogel scaffolds. We discovered the necessity of cell-to-cell proximity between the two cell types as well as preference for the natural cell binding capabilities of hydrogels like collagen. We discovered increased osteogenic and angiogenic potential as seen by amplified gene and protein expression of ALP, BMP-2, VEGF, and PECAM. The TPS bioreactor further augmented these expressions, indicating a synergistic effect between coculture and applied shear stress. The development of this dynamic coculture platform for the prevascularization of engineered bone, emphasizing the importance of the construct microenvironments and will advance the clinical use of tissue engineered constructs. This article is protected by copyright. All rights reserved.

Pub.: 18 Jan '17, Pinned: 25 Jan '18

In vitro model of vascularized bone: synergizing vascular development and osteogenesis.

Abstract: Tissue engineering provides unique opportunities for regenerating diseased or damaged tissues using cells obtained from tissue biopsies. Tissue engineered grafts can also be used as high fidelity models to probe cellular and molecular interactions underlying developmental processes. In this study, we co-cultured human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (MSCs) under various environmental conditions to elicit synergistic interactions leading to the colocalized development of capillary-like and bone-like tissues. Cells were encapsulated at the 1:1 ratio in fibrin gel to screen compositions of endothelial growth medium (EGM) and osteogenic medium (OM). It was determined that, to form both tissues, co-cultures should first be supplied with EGM followed by a 1:1 cocktail of the two media types containing bone morphogenetic protein-2. Subsequent studies of HUVECs and MSCs cultured in decellularized, trabecular bone scaffolds for 6 weeks assessed the effects on tissue construct of both temporal variations in growth-factor availability and addition of fresh cells. The resulting grafts were implanted subcutaneously into nude mice to determine the phenotype stability and functionality of engineered vessels. Two important findings resulted from these studies: (i) vascular development needs to be induced prior to osteogenesis, and (ii) the addition of additional hMSCs at the osteogenic induction stage improves both tissue outcomes, as shown by increased bone volume fraction, osteoid deposition, close proximity of bone proteins to vascular networks, and anastomosis of vascular networks with the host vasculature. Interestingly, these observations compare well with what has been described for native development. We propose that our cultivation system can mimic various aspects of endothelial cell-osteogenic precursor interactions in vivo, and could find utility as a model for studies of heterotypic cellular interactions that couple blood vessel formation with osteogenesis.

Pub.: 14 Dec '11, Pinned: 24 Jan '18