Article quick-view

Development of genome-wide SSR markers in melon with their cross-species transferability analysis and utilization in genetic diversity study

ABSTRACT

Abstract Simple sequence repeats (SSRs) are one of the most informative and widely used molecular markers in plant research. The melon draft genome has provided a powerful tool for SSR marker development in this species in which there are still not enough SSR markers. We therefore developed genome-wide SSR markers from melon, which were used for genetic diversity analysis in melon accessions and comparative mapping with cucumber and watermelon. A total of 44,265 microsatellites from the melon genome were characterized, of which 28,570 SSR markers were developed. In silico PCR analysis with these SSR markers identified 4002 and 1085 with one amplicon in cucumber and watermelon genome, respectively. With these cross-species transferable melon SSR markers, the chromosome synteny between melon and cucumber as well as watermelon was established, which revealed complicated mosaic patterns of syntenic blocks among them. We experimentally validated 384 SSR markers, from which 42 highly informative SSR ones were selected for genetic diversity and population structure analysis among 118 melon accessions. The large number of melon SSR markers developed in this study provides a valuable resource for genetic linkage map construction, molecular mapping, and marker-assisted selection (MAS) in melon. Furthermore, the cross-species transferable SSR markers could also be useful in various molecular marker-related studies in other closely related species in Cucurbitaceae family in which draft genomes are not yet available.AbstractSimple sequence repeats (SSRs) are one of the most informative and widely used molecular markers in plant research. The melon draft genome has provided a powerful tool for SSR marker development in this species in which there are still not enough SSR markers. We therefore developed genome-wide SSR markers from melon, which were used for genetic diversity analysis in melon accessions and comparative mapping with cucumber and watermelon. A total of 44,265 microsatellites from the melon genome were characterized, of which 28,570 SSR markers were developed. In silico PCR analysis with these SSR markers identified 4002 and 1085 with one amplicon in cucumber and watermelon genome, respectively. With these cross-species transferable melon SSR markers, the chromosome synteny between melon and cucumber as well as watermelon was established, which revealed complicated mosaic patterns of syntenic blocks among them. We experimentally validated 384 SSR markers, from which 42 highly informative SSR ones were selected for genetic diversity and population structure analysis among 118 melon accessions. The large number of melon SSR markers developed in this study provides a valuable resource for genetic linkage map construction, molecular mapping, and marker-assisted selection (MAS) in melon. Furthermore, the cross-species transferable SSR markers could also be useful in various molecular marker-related studies in other closely related species in Cucurbitaceae family in which draft genomes are not yet available.