Article quick-view

A Magnetar-like Outburst from a High-B Radio Pulsar

ABSTRACT

Radio pulsars are believed to have their emission powered by the loss of rotational kinetic energy. By contrast, magnetars show intense X-ray and gamma-ray radiation whose luminosity greatly exceeds that due to spin-down and is believed to be powered by intense internal magnetic fields. A basic prediction of this picture is that radio pulsars of high magnetic field should show magnetar-like emission. Here we report on a magnetar-like X-ray outburst from the radio pulsar PSR J1119-6127, heralded by two short bright X-ray bursts on 2016 July 27 and 28 (Kennea et al. 2016; Younes et al. 2016). Using Target-of-Opportunity data from the Swift X-ray Telescope and NuSTAR, we show that this pulsar's flux has brightened by a factor of > 160 in the 0.5-10 keV band, and its previously soft X-ray spectrum has undergone a strong hardening, with strong pulsations appearing for the first time above 2.5 keV, with phase-averaged emission detectable up to 25 keV. By comparing Swift-XRT and NuSTAR timing data with a pre-outburst ephemeris derived from Fermi Large Area Telescope data, we find that the source has contemporaneously undergone a large spin-up glitch of amplitude df/f = 5.74(8) E-6. The collection of phenomena observed thus far in this outburst strongly mirrors those in most magnetar outbursts and provides an unambiguous connection between the radio pulsar and magnetar populations.