Article quick-view

Centriole translocation and degeneration during ciliogenesis in Caenorhabditis elegans neurons

ABSTRACT

Neuronal cilia that are formed at the dendritic endings of sensory neurons are essential for sensory perception. However, it remains unclear how the centriole-derived basal body is positioned to form a template for cilium formation. Using fluorescence time-lapse microscopy, we show that the centriole translocates from the cell body to the dendrite tip in the Caenorhabditis elegans sensory neurons. The centriolar protein SAS-5 interacts with the dynein light-chain LC8 and conditional mutations of cytoplasmic dynein-1 block centriole translocation and ciliogenesis. The components of the central tube are essential for the biogenesis of centrioles, which later drive ciliogenesis in the dendrite; however, the centriole loses these components at the late stage of centriole translocation and subsequently recruits transition zone and intraflagellar transport proteins. Together, our results provide a comprehensive model of ciliogenesis in sensory neurons and reveal the importance of the dynein-dependent centriole translocation in this process.