Article quick-view

Characterizations of multinormality and corresponding tests of fit, including for Garch models


We provide novel characterizations of multivariate normality that incorporate both the characteristic function and the moment generating function, and we employ these results to construct a class of affine invariant, consistent and easy-to-use goodness-of-fit tests for normality. The test statistics are suitably weighted $L^2$-statistics, and we provide their asymptotic behavior both for i.i.d. observations as well as in the context of testing that the innovation distribution of a multivariate GARCH model is Gaussian. We also study the finite-sample behavior of the new tests and compare the new criteria with alternative existing tests.