Article quick-view

Microwave-assisted microemulsion technique for production of Miconazole nitrate- and Econazole nitrate-loaded solid lipid nanoparticles.

ABSTRACT

The microwave-assisted production of solid lipid nanoparticles (SLNs) is a novel technique reported recently by our group. The small particle size, solid nature and use of physiologically well-tolerated lipid materials make SLNs an interesting and potentially efficacious drug carrier. The main purpose of this research work was to investigate the suitability of microwave-assisted microemulsion technique to encapsulate selected ionic drug substances such as miconazole nitrate and econazole nitrate. The microwave-produced SLNs had a small size (250-300 nm), low polydispersity (<0.20), high encapsulation efficiency (72-87%) and loading capacity (3.6-4.3%). Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) studies suggested reduced crystallinity of stearic acid in SLNs. The release studies demonstrated a slow, sustained but incomplete release of drugs (<60% after 24 h) from microwave-produced SLNs. Data fitting of drug release data revealed that the release of both drugs from microwave-produced SLNs was governed by non-Fickian diffusion indicating that drug release was both diffusion- and dissolution- controlled. Anti-fungal efficacy of drug-loaded SLNs was evaluated on C. albicans. The cell viability studies showed that cytotoxicity of SLNs was concentration-dependent. These encouraging results suggest that the microwave-assisted procedure is suitable for encapsulation of ionic drugs and that microwave-produced SLNs can act as potential carriers of antifungal drugs.