Article quick-view

Research paper by

Lin Zhou, Vincent Y. F. Tan, Mehul Motani

Indexed on

16th Aug 2017

Published on

16th Aug 2017

Published in

arXiv - Computer Science - Information Theory

This paper is not available for free

You can find the original article on the journal website.

Go to sourceThe rate-distortion saddle-point problem considered by Lapidoth (1997) consists in finding the minimum rate to compress an arbitrary ergodic source when one is constrained to use a random Gaussian codebook and minimum (Euclidean) distance encoding is employed. We extend Lapidoth's analysis in several directions in this paper. Firstly, we consider refined asymptotics. In particular, when the source is stationary and memoryless, we establish the second-order, moderate, and large deviation asymptotics of the problem. Secondly, by "random Gaussian codebook", Lapidoth refers to a collection of random codewords, each of which is drawn independently and uniformly from the surface of an $n$-dimensional sphere. To be more precise, we term this as a spherical Gaussian codebook. We also consider i.i.d.\ Gaussian codebooks in which each random codeword is drawn independently from a product Gaussian distribution. We derive the second-order, moderate, and large deviation asymptotics when i.i.d.\ Gaussian codebooks are employed. Interestingly, in contrast to the recent work on the channel coding counterpart by Scarlett, Tan and Durisi (2017), the dispersions for spherical and i.i.d.\ Gaussian codebooks are identical. Our bounds on the optimal error exponent for the spherical case coincide on a non-empty interval of rates above the rate-distortion function. The optimal error exponent for the i.i.d.\ case is established for all rates.