Article quick-view

Adenoviral expression of protein-L-isoaspartyl methyltransferase (PIMT) partially attenuates the biochemical changes in PIMT-deficient mice.


Protein-L-isoaspartyl methyltransferase (PIMT) is a putative protein repair enzyme, which methylates the alpha-carboxyl group of atypical L-isoaspartyl residues in aged proteins and converts them to normal L-aspartyl residues. Two splicing variants, PIMT-I and PIMT-II, have been reported, although their biological functions and specific subcellular substrates are still to be defined. We and another group have previously showed that PIMT-deficient mice succumbed to fatal epileptic seizures associated with an abnormal accumulation of isoaspartate (IsoAsp) in the brain. In the present study, we prepared two recombinant adenovirus vectors that contained PIMT-I or PIMT-II, respectively, in order to investigate the differential biological roles of PIMT-I and PIMT-II. These recombinant viruses differentially conferred PIMT-I or PIMT-II expressions in cultured neurons. Biochemical analyses showed that either of PIMT-I or PIMT-II effectively repaired the damaged proteins in PIMT-deficient neurons, but the concomitant expression failed to show an additive effect in the repair of IsoAsp. These results suggested that PIMT-I and PIMT-II might share a common biological function and/or subcellular substrates. In addition, we administered an adeno-PIMT-I vector into the brain of PIMT-deficient mice at embryonic day 14.5 by an exo-utero method to assess the biological effects in vivo. The result showed that recombinant adeno-PIMT improved the symptoms of PIMT-deficient mice in vivo, but only partially repaired IsoAsp in damaged proteins. The gene therapy presented in this report provided a better prognosis for the survival of PIMT-deficient mice than the previously reported anti-epileptic drug therapy. The results suggested a new reagent for gene therapy applicable to ageing-associated neurodegenerative disorders.