Article quick-view

Numerical modeling of shape and topology optimisation of a piezoelectric cantilever beam in an energy-harvesting sensor

ABSTRACT

Abstract Piezoelectric materials are excellent transducers for converting mechanical energy from the environment for use as electrical energy. The conversion of mechanical energy to electrical energy is a key component in the development of self-powered devices, especially enabling technology for wireless sensor networks. This paper proposes an alternative method for predicting the power output of a bimorph cantilever beam using a finite-element method for both static and dynamic frequency analyses. A novel approach is presented for optimising the cantilever beam, by which the power density is maximised and the structural volume is minimised simultaneously. A two-stage optimisation is performed, i.e., a shape optimisation and then a “topology” hole opening optimisation.AbstractPiezoelectric materials are excellent transducers for converting mechanical energy from the environment for use as electrical energy. The conversion of mechanical energy to electrical energy is a key component in the development of self-powered devices, especially enabling technology for wireless sensor networks. This paper proposes an alternative method for predicting the power output of a bimorph cantilever beam using a finite-element method for both static and dynamic frequency analyses. A novel approach is presented for optimising the cantilever beam, by which the power density is maximised and the structural volume is minimised simultaneously. A two-stage optimisation is performed, i.e., a shape optimisation and then a “topology” hole opening optimisation.