Article quick-view

Research paper by

Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai

Indexed on

10th Apr 2017

Published on

10th Apr 2017

Published in

arXiv - Computer Science - Data Structures and Algorithms

This paper is not available for free

You can find the original article on the journal website.

Go to sourceWe consider the problem of maintaining an approximately maximum (fractional) matching and an approximately minimum vertex cover in a dynamic graph. Starting with the seminal paper by Onak and Rubinfeld [STOC 2010], this problem has received significant attention in recent years. There remains, however, a polynomial gap between the best known worst case update time and the best known amortised update time for this problem, even after allowing for randomisation. Specifically, Bernstein and Stein [ICALP 2015, SODA 2016] have the best known worst case update time. They present a deterministic data structure with approximation ratio $(3/2+\epsilon)$ and worst case update time $O(m^{1/4}/\epsilon^2)$, where $m$ is the number of edges in the graph. In recent past, Gupta and Peng [FOCS 2013] gave a deterministic data structure with approximation ratio $(1+\epsilon)$ and worst case update time $O(\sqrt{m}/\epsilon^2)$. No known randomised data structure beats the worst case update times of these two results. In contrast, the paper by Onak and Rubinfeld [STOC 2010] gave a randomised data structure with approximation ratio $O(1)$ and amortised update time $O(\log^2 n)$, where $n$ is the number of nodes in the graph. This was later improved by Baswana, Gupta and Sen [FOCS 2011] and Solomon [FOCS 2016], leading to a randomised date structure with approximation ratio $2$ and amortised update time $O(1)$. We bridge the polynomial gap between the worst case and amortised update times for this problem, without using any randomisation. We present a deterministic data structure with approximation ratio $(2+\epsilon)$ and worst case update time $O(\log^3 n)$, for all sufficiently small constants $\epsilon$.