Article quick-view

Investigating the structure of semantic networks in low and high creative persons.

ABSTRACT

According to Mednick's (1962) theory of individual differences in creativity, creative individuals appear to have a richer and more flexible associative network than less creative individuals. Thus, creative individuals are characterized by "flat" (broader associations) instead of "steep" (few, common associations) associational hierarchies. To study these differences, we implement a novel computational approach to the study of semantic networks, through the analysis of free associations. The core notion of our method is that concepts in the network are related to each other by their association correlations-overlap of similar associative responses ("association clouds"). We began by collecting a large sample of participants who underwent several creativity measurements and used a decision tree approach to divide the sample into low and high creative groups. Next, each group underwent a free association generation paradigm which allowed us to construct and analyze the semantic networks of both groups. Comparison of the semantic memory networks of persons with low creative ability and persons with high creative ability revealed differences between the two networks. The semantic memory network of persons with low creative ability seems to be more rigid, compared to the network of persons with high creative ability, in the sense that it is more spread out and breaks apart into more sub-parts. We discuss how our findings are in accord and extend Mednick's (1962) theory and the feasibility of using network science paradigms to investigate high level cognition.