Article quick-view

Sustainable Hypersaline Microbial Fuel Cells: Inexpensive Recyclable Polymer Supports for Carbon Nanotube Conductive Paint Anodes.


Microbial fuel cells are an emerging technology for wastewater treatment, but in order to be commercially viable and sustainable, the electrode materials must be inexpensive, recyclable and reliable. In this paper, recyclable polymeric supports were explored for the development of anode electrodes to be applied in-field in single chamber microbial fuel cells operated in hypersaline conditions. The support was covered with a carbon-nanotube (CNT)-based conductive paint and biofilms were able to colonize the electrodes. The single chamber microbial fuel cells with Pt-free cathodes delivered a reproducible power output after 15 days of operation, achieving 12 ± 1 mW m-2 at a current density of 69 ± 7 mA m-2. The decrease of performance in long-term experiments was mostly related to inorganic precipitates on the cathode electrode and did not affect the performance of the anode, as shown by experiments replacing the cathode that regenerated the fuel cell performance. The results of these studies show the feasibility of carbon nanotube-based paint coated polymeric supports for microbial fuel cell applications.