Article quick-view

Folic acid administration produces an antidepressant-like effect in mice: evidence for the involvement of the serotonergic and noradrenergic systems.


Clinical studies have shown that folic acid plays a role in the pathophysiology of depression. However, very few studies have investigated its effect in behavioral models of depression. Hence, this study tested its effect in the forced swimming test (FST) and the tail suspension test (TST), two models predictive of antidepressant activity, in mice. Folic acid administered by oral route (p.o.) produced a reduction in the immobility time in the FST (50-100mg/kg) and in the TST (10-50mg/kg). The administration of folic acid by i.c.v. route also reduced the immobility time in the FST (10nmol/site) and in the TST (1-10nmol/site). Both folic acid administered by oral and i.c.v. route produced no psychostimulant effect, which indicates that its antidepressant-like effect is specific. Pretreatment of mice with p-chlorophenylalanine methyl ester (PCPA; 100mg/kg, i.p., an inhibitor of serotonin (5-HT) synthesis, for 4 consecutive days), ketanserin (5mg/kg, i.p., a 5-HT(2A/2C) receptor antagonist), prazosin (1mg/kg, i.p., an alpha(1)-adrenoceptor antagonist) or yohimbine (1mg/kg, i.p., an alpha(2)-adrenoceptor antagonist) prevented the anti-immobility effect of folic acid (50mg/kg, p.o.) in the FST. Moreover, the pretreatment of mice with WAY100635 (0.1mg/kg, s.c., a selective 5-HT(1A) receptor antagonist) blocked the decrease in immobility time in the FST elicited by folic acid (50mg/kg, p.o.), but produced a synergistic effect with a subeffective dose of folic acid (10mg/kg, p.o.). In addition, a subeffective dose of folic acid (10mg/kg, p.o.) produced a synergistic antidepressant-like effect with fluoxetine (10mg/kg, p.o.) in the FST. Overall, the results firstly indicate that folic acid produced an antidepressant-like effect in FST and in TST and that this effect appears to be mediated by an interaction with the serotonergic (5-HT(1A) and 5-HT(2A/2C) receptors) and noradrenergic (alpha(1)- and alpha(2)-adrenoceptors) systems.