Article quick-view

Semicrystalline Structure-Dielectric Property Relationship and Electrical Conduction in a Biaxially Oriented Poly(vinylidene fluoride) Film under High Electric Fields and High Temperatures.


Poly(vinylidene fluoride) (PVDF)-based homopolymers and copolymers are attractive for a broad range of electroactive applications because of their high dielectric constants. Especially, biaxially oriented PVDF (BOPVDF) films exhibit a DC breakdown strength as high as that for biaxially oriented polypropylene films. In this work, we revealed the molecular origin of the high dielectric constant via study of a commercial BOPVDF film. By determination of the dielectric constant for the amorphous phase in BOPVDF, a high value of ca. 21-22 at 25 °C was obtained, and a three-phase (i.e., lamellar crystal/oriented interphase/amorphous region) semicrystalline model was proposed to explain this result. Meanwhile, electronic conduction mechanisms in BOPVDF under high electric fields and elevated temperatures were investigated by thermally stimulated depolarization current (TSDC) spectroscopy and leakage current studies. Space charge injection from metal electrodes was identified as a major factor for electronic conduction when BOPVDF was poled above 75 °C and 20 MV/m. In addition, when silver or aluminum were used as electrodes, new ions were generated from electrochemical reactions under high fields. Due to the electrochemical reactions between PVDF and the metal electrode, a question is raised for practical electrical applications using PVDF and its copolymers under high-field and high-temperature conditions. A potential method to prevent electrochemical degradation of PVDF is proposed in this study.