Article quick-view

Enhancement of the Krylov subspace regularization for microwave biomedical imaging.


Although Krylov subspace methods provide fast regularization techniques for the microwave imaging problem, they cannot preserve the edges of the object being imaged and may result in an oscillatory reconstruction. To suppress these spurious oscillations and to provide an edge-preserving regularization, we use a multiplicative regularizer which improves the reconstruction results significantly while adding little computational complexity to the inversion algorithm. We show the inversion results for a real human forearm assuming the 2-D transverse magnetic illumination and a cylindrical object assuming the 2-D transverse electric illumination.