Article quick-view

Joint Face Alignment and 3D Face Reconstruction with Application to Face Recognition


Face alignment and 3D face reconstruction are traditionally accomplished as separated tasks. By exploring the strong correlation between 2D landmarks and 3D shapes, in contrast, we propose a joint face alignment and 3D face reconstruction method to simultaneously solve these two problems for 2D face images of arbitrary poses and expressions. This method, based on a summation model of 3D face shapes and cascaded regression in 2D and 3D face shape spaces, iteratively and alternately applies two cascaded regressors, one for updating 2D landmarks and the other for 3D face shape.The 3D face shape and the landmarks are correlated via a 3D-to-2D mapping matrix, which is updated in each iteration to refine the location and visibility of 2D landmarks. Unlike existing methods, the proposed method can fully automatically generate both pose-and-expression-normalized (PEN) and expressive 3D face shapes and localize both visible and invisible 2D landmarks. Based on the PEN 3D face shapes, we devise a method to enhance face recognition accuracy across poses and expressions. Extensive experiments show that the proposed method can achieve the state-of-the-art accuracy in both face alignment and 3D face reconstruction, and benefit face recognition owing to its reconstructed PEN 3D face shapes.