Article quick-view

GPS-Denied Relative Motion Estimation For Fixed-Wing UAV Using the Variational Pose Estimator

ABSTRACT

Relative pose estimation between fixed-wing unmanned aerial vehicles (UAVs) is treated using a stable and robust estimation scheme. The motivating application of this scheme is that of "handoff" of an object being tracked from one fixed-wing UAV to another in a team of UAVs, using onboard sensors in a GPS-denied environment. This estimation scheme uses optical measurements from cameras onboard a vehicle, to estimate both the relative pose and relative velocities of another vehicle or target object. It is obtained by applying the Lagrange-d'Alembert principle to a Lagrangian constructed from measurement residuals using only the optical measurements. This nonlinear pose estimation scheme is discretized for computer implementation using the discrete Lagrange-d'Alembert principle, with a discrete-time linear filter for obtaining relative velocity estimates from optical measurements. Computer simulations depict the stability and robustness of this estimator to noisy measurements and uncertainties in initial relative pose and velocities.