Quantcast

Xihuang pill promotes apoptosis of Treg cells in the tumor microenvironment in 4T1 mouse breast cancer by upregulating MEKK1/SEK1/JNK1/AP-1 pathway.

Research paper by Liang L Su, Yiming Y Jiang, Yu Y Xu, Xinye X Li, Wenbin W Gao, Chunwei C Xu, Changqian C Zeng, Jie J Song, Wencai W Weng, Wenbo W Liang

Indexed on: 02 May '18Published on: 02 May '18Published in: Biomedicine & Pharmacotherapy



Abstract

To determine the role of the MEKK1/SEK1/JNK1/AP-1 pathway in the action of Xihuang pill (XHP) in reducing regulatory T (Treg) cell numbers in the tumor microenvironment in a 4T1 mouse breast cancer model, and to clarify the anti-tumor mechanism of XHP in breast cancer. We established a mouse 4T1 breast cancer model. Model mice were administered XHP for 2 weeks, and tumor tissues were then removed, weighed, sliced, and homogenized. Treg cells in the tumor microenvironment were isolated by magnetic cell sorting and analyzed by immunohistochemistry and flow cytometry. Treg cell apoptosis was detected by TdT-mediated dUTP nick end labeling. mRNA expression levels of MEKK1, SEK1, JNK1, and AP-1 in Treg cells in the tumor microenvironment were detected by quantitative real-time PCR and their protein expression levels were detected by immunofluorescence staining and western blot. Tumor weights were significantly lower in the XHP groups compared with the untreated control group. The overall number of Treg cells in the tumor microenvironment decreased while the number of apoptotic Treg cells increased with increasing doses of XHP. mRNA and protein expression levels of MEKK1, SEK1, JNK1, and AP-1 in Treg cells in the tumor microenvironment increased with increasing doses of XHP. XHP might promote Treg cell apoptosis in the tumor microenvironment and further inhibit the tumor growth of 4T1 mouse breast cancer. The mechanism of XHP may be related to upregulation of gene and protein expression of MEKK1, SEK1, JNK1, and AP-1 in Treg cells in the tumor microenvironment. Copyright © 2018. Published by Elsevier Masson SAS.