Quantcast

Water, Vol. 12, Pages 642: A Study on Setting Disaster-Prevention Rainfall by Rainfall Duration in Urban Areas Considering Natural Disaster Damage: Focusing on South Korea

Research paper by Youngseok Song, Moojong Park

Indexed on: 28 Feb '20Published on: 27 Feb '20Published in: Water



Abstract

Inundation damage occurs in urban regions due to short flood reach time and increased surface runoff caused by urbanized impervious areas. Furthermore, heavy rainfall frequency has increased because of climate change, thus exceeding the design frequency and resulting in sewer pipes’ lack of flood control capacity, with damage expanding from low-lying areas. Despite many urban disaster-mitigation policies, complex causes and uncertainties make reducing urban inundation damage difficult. This study established a rainfall-related disaster-prevention standard by time duration considering rainfall characteristics targeting urban disaster-induced inundation damage. Based on the South Korean urbanization rate and population, seven target regions were selected. Rainfall by time duration was analyzed with respect to disaster length (number of days) from 2010–2017. The average rainfall for durations from 1–24 hours were analyzed according to disaster length (1–13 days). Using the results, an equation was proposed for rainfall estimation by length of disaster resulting in urban inundation damage, through multiple regression analysis. An equation was developed for rainfall-related disaster-prevention in urban areas considering the length of disaster and rainfall duration. This was accomplished by selecting a duration whereby the average rainfall of duration corresponded to 50% of total rainfall during the disaster period.