Quantcast

Water, Vol. 12, Pages 250: Hydrological Modeling to Assess the Efficiency of Groundwater Replenishment through Natural Reservoirs in the Hungarian Drava River Floodplain

Research paper by Salem, Dezső, El-Rawy, Lóczy

Indexed on: 21 Jan '20Published on: 16 Jan '20Published in: Water



Abstract

Growing drought hazard and water demand for agriculture, ecosystem conservation, and tourism in the Hungarian Drava river floodplain call for novel approaches to maintain wetland habitats and enhance agricultural productivity. Floodplain rehabilitation should be viewed as a complex landscape ecological issue which, beyond water management goals to relieve water deficit, ensures a high level of provision for a broad range of ecosystem services. This paper explores the hydrological feasibility of alternative water management, i.e., the restoration of natural reservoirs (abandoned paleochannels) to mitigate water shortage problems. To predict the efficiency of the project, an integrated surface water (Wetspass-M) and groundwater model (MODFLOW-NWT) was developed and calibrated with an eight-year data series. Different management scenarios for two natural reservoirs were simulated with filling rates ranging from 0.5 m3 s−1 to 1.5 m3 s−1. In both instances, a natural reservoir with a feeding rate of 1 m3 s−1 was found to be the best scenario. In this case 14 days of filling are required to reach the possible maximum reservoir stage of +2 m. The first meter rise increases the saturation of soil pores and the second creates an open surface water body. Two filling periods per year, each lasting for around 180 days, are required. The simulated water balance shows that reservoir–groundwater interactions are mainly governed by the inflow into and outflow from the reservoir. Such an integrated management scheme is applicable for floodplain rehabilitation in other regions with similar hydromorphological conditions and hazards, too.