Quantcast

Vote selection mechanisms and probabilistic data association-based mobile node localization algorithm in mixed LOS/NLOS environments

Research paper by Nan Hu, Chengdong Wu; Pengda Liu; Hao Wu; Boya Wu; Long Cheng

Indexed on: 12 Aug '16Published on: 01 Aug '16Published in: Telecommunication Systems



Abstract

Abstract As one of the key technologies of wireless sensor networks (WSNs), the localization of mobile nodes (MN) is one of the most significant research topics in WSNs. When a line-of-sight (LOS) channel is available, accuracy localization result can be obtained. Motivated by the fact that the non-line-of-sight (NLOS) propagation of signal is ubiquitous and decreases the accuracy of localization, we propose a MN localization algorithm in mixed LOS/NLOS environments. Considering the characteristics of NLOS error, we propose a localization algorithm based on vote selection mechanisms to filter the distance measurements and reserve the reliable measurements. Then a modified probabilistic data association algorithm is proposed to fuse the multiple measurements reserved from the vote selection. The position of the MN is finally determined by a linear least squares algorithm based on reference nodes selection. This algorithm effectively mitigates various kinds of NLOS errors and largely improves the localization accuracy of the MN in mixed LOS/NLOS environments. The simulation and experiments results show that the proposed algorithm has better robustness and higher localization accuracy than other methods.AbstractAs one of the key technologies of wireless sensor networks (WSNs), the localization of mobile nodes (MN) is one of the most significant research topics in WSNs. When a line-of-sight (LOS) channel is available, accuracy localization result can be obtained. Motivated by the fact that the non-line-of-sight (NLOS) propagation of signal is ubiquitous and decreases the accuracy of localization, we propose a MN localization algorithm in mixed LOS/NLOS environments. Considering the characteristics of NLOS error, we propose a localization algorithm based on vote selection mechanisms to filter the distance measurements and reserve the reliable measurements. Then a modified probabilistic data association algorithm is proposed to fuse the multiple measurements reserved from the vote selection. The position of the MN is finally determined by a linear least squares algorithm based on reference nodes selection. This algorithm effectively mitigates various kinds of NLOS errors and largely improves the localization accuracy of the MN in mixed LOS/NLOS environments. The simulation and experiments results show that the proposed algorithm has better robustness and higher localization accuracy than other methods.