VKORC1 and CYP2C9 genotype and patient characteristics explain a large proportion of the variability in warfarin dose requirement among children.

Research paper by Tina T TT Biss, Peter J PJ Avery, Leonardo R LR Brandão, Elizabeth A EA Chalmers, Michael D MD Williams, John D JD Grainger, Julian B S JB Leathart, John P JP Hanley, Ann K AK Daly, Farhad F Kamali

Indexed on: 20 Oct '11Published on: 20 Oct '11Published in: Blood


Although genetic and environmental factors explain approximately half of the interindividual variability in warfarin dose requirement in adults, there is limited information available in children. In a cross-sectional study of anticoagulated children from 5 tertiary care centers, 120 children with a stable warfarin dose were genotyped for VKORC1 (-1639G > A; rs9923231), CYP2C9 (*2 and *3 alleles; rs1799853 and rs1057910), and CYP4F2 (V433M; rs2108622) polymorphisms. Clinical and demographic features were recorded. Multiple regression analysis of the data showed that, although CYP4F2 made no contribution to the dose model, 72.4% of the variability in warfarin dose requirement is attributed to by patient height, genetic polymorphisms in VKORC1 and CYP2C9, and indication for warfarin. The recently published International Warfarin Pharmacogenetics Consortium pharmacogenetic-based warfarin dosing algorithm (based on data derived from anticoagulated adults) consistently overestimated warfarin dose for our cohort of children. A similar proportion of the interindividual variability in warfarin dose is explained by genetic factors in children compared with adult patients, although height is a greater predictor in children. A pharmacogenomic approach to warfarin dosing has the potential to improve the efficacy and safety of warfarin therapy in children. However, algorithms should be derived from data in children if their potential benefit is to be realized.