Quantcast

Visual sensory substitution in vestibular compensation: neuronal substrates in the alert cat

Research paper by Y. Zennou-Azogui, C. Xerri, F. Harlay

Indexed on: 01 Apr '94Published on: 01 Apr '94Published in: Experimental Brain Research



Abstract

The purpose of this study was to investigate adaptive changes in the activity of vestibular nuclei neurons unilaterally deprived of their primary afferent inputs when influenced by visual motion cues. These neuronal changes might account for the established role that vision plays in the compensation for posturo-kinetic deficits after the loss of vestibular inputs. Neuronal recordings were made in alert, non-paralysed cats that had undergone unilateral vestibular nerve sections. The unit responses collected in both Deiters' nuclei were compared to those previously recorded in intact cats. We analysed the extracellular activity of Deiters' nucleus neurons, as well as the optokinetic reflex (OKR) evoked during sinusoidal translation of a whole-field optokinetic stimulus in the vertical plane. In intact cats, we found the unit firing rate closely correlated with the visual surround translation velocity, and the relationship between the discharge rate and the motion frequency was tuned around an optimal frequency. The maximum firing rate modulation was generally below the 0.25 Hz stimulus frequency; unit responses were weak or even absent above 0.25 Hz. From the 4th day to the end of the 3rd week after ipsilateral deafferentation, a majority of cells was found to display maximum discharge modulation during vertical visual stimulation at 0.50 Hz, and even at 0.75 Hz, indicating that the frequency bandwidth of the visually induced responses of deafferented vestibular nuclei neurons had been extended. Consequently, the frequency-dependent attenuation in the sensitivity of vestibular neurons to visual inputs was much less pronounced. After the first 3 weeks postlesion, the unit response characteristics were very similar to those observed prior to the deafferentation. On the nucleus contralateral to the neurectomy, the maximum modulation of most cells was tuned to the low frequencies of optokinetic stimulation, as also seen prior to the lesion. We found, however, a subgroup of cells displaying well-developed responses above 0.50 Hz. Under all experimental conditions, the neuronal response phase still remained closely correlated with the motion velocity of the vertical sinusoidal visual pattern. We hypothesize that Deiters' neurons deprived of their primary afferents may transiently acquire the ability to code fast head movements on the basis of visual messages, thus compensating, at least partially, for the loss of dynamic vestibular inputs during the early stages of the recovery process. Since the overall vertical OKR gain was not significantly altered within the 0.0125 Hz–1 Hz range of stimulation after the unilateral neurectomy, it can be postulated that the increased sensitivity of deafferented vestibular neurons to visual motion cues was accounted for by plasticity mechanisms operating within the deafferented Deiters' nucleus. The neuroplasticity mechanisms underlying this rapid and temporary increase in neuronal sensitivity are discussed.